STRICTLY SINGULAR MULTIPLICATION OPERATORS ON $\mathcal{L}(X)$

BY

Martin Mathieu
Mathematical Sciences Research Centre, Queen's University Belfast University Road, Belfast BT7 1NN, Northern Ireland
e-mail: m.m@qub.ac.uk

AND
Pedro Tradacete*

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) Consejo Superior de Investigaciones Científicas
C/ Nicolás Cabrera, 13-15, Campus de Cantoblanco UAM, E-28049 Madrid, Spain e-mail: pedro.tradacete@icmat.es

ABSTRACT

Exploiting several ℓ_{p}-factorization results for strictly singular operators, we study the strict singularity of the multiplication operator $L_{A} R_{B}: T \mapsto A T B$ on $\mathcal{L}(X)$ for various Banach spaces X.

[^0]
1. Introduction

Let X be a Banach space and let $\mathcal{L}(X)$ denote the Banach algebra of bounded linear operators from X to itself. Given $A, B \in \mathcal{L}(X)$ let us consider the multiplication operator $L_{A} R_{B}: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ given by $L_{A} R_{B}(T)=A T B$. Properties of $L_{A} R_{B}$, and more general elementary operators, that is, finite sums of multiplication operators, have been studied for many years from a variety of viewpoints. We mention spectral theory, Fredholm theory, compactness properties, norms, positivity and numerous others, depending on the nature of the Banach space X. Various survey articles are contained in the proceedings volumes [3] and [17], and the paper [22] is especially pertinent here.

The aim of this note is to explore the strict singularity of the operator $L_{A} R_{B}$. Recall that an operator is strictly singular if it is not an isomorphism when restricted to any infinite-dimensional subspace of its domain. In other words, $T \in \mathcal{L}(X, Y)$ is strictly singular if, for every infinite-dimensional subspace $X_{0} \subseteq X$ and every $\varepsilon>0$, there is $x \in X_{0}$ such that $\|T x\|_{Y} \leq \varepsilon\|x\|_{X}$. The class of strictly singular operators forms a closed two-sided operator ideal which contains the compact operators. These operators were introduced by T. Kato [12] in connection with the perturbation theory of Fredholm operators; in particular, it is well known that the spectrum of a strictly singular operator has the same structure as that of a compact operator.

In most cases, the class of strictly singular operators is strictly larger than that of compact operators. The formal inclusion $i: \ell_{p} \hookrightarrow \ell_{q}$ for $1<p<q<\infty$ provides a simple example of a strictly singular operator which is not compact. Nevertheless, Pitt's theorem ([1, Theorem 2.1.4]) asserts that for $p<q$, every operator $T: \ell_{q} \rightarrow \ell_{p}$ is compact. As a consequence, one can also deduce that on $\mathcal{L}\left(\ell_{p}\right)$ the classes of compact and strictly singular operators coincide (cf. [13, p. 76]).

Our approach in this paper mainly focuses on analyzing strict singularity via factorization through certain spaces. In particular, we will show that for every $p<q$ and $A, B \in \mathcal{L}\left(\ell_{p}, \ell_{q}\right)$, the operator $L_{A} R_{B}: \mathcal{L}\left(\ell_{q}, \ell_{p}\right) \rightarrow \mathcal{L}\left(\ell_{p}, \ell_{q}\right)$ is strictly singular (Theorem 5.5). Motivated by this fact, we introduce the notion of approximately $\left(\ell_{p}, \ell_{q}\right)$-factorizable operator, which yields a formally stronger condition than that of a strictly singular operator. We will show that if A, B are approximately $\left(\ell_{p}, \ell_{q}\right)$-factorizable operators, then the corresponding multiplication operator $L_{A} R_{B}$ is strictly singular (Theorem 5.7).

It is easy to check that if $L_{A} R_{B}$ is strictly singular on $\mathcal{L}(X)$, then so are the operators A and B^{*} (see Section 2). The converse implication has been analyzed by M. Lindström, E. Saksman and H. O. Tylli in [15], where it was shown to hold for X being any of the following classical Banach spaces: $L_{p}[0,1]$ $(1<p<\infty) ; \ell_{p} \oplus \ell_{q}(1<p \leq q<\infty) ; C(K)$ (for compact Hausdorff K); and \mathcal{L}^{1}.

Recall that strictly singular operators on $C(K)$ spaces, and more generally, on C^{*}-algebras, are weakly compact (see $[19,20]$). We will show that, if X is a reflexive Banach space with an unconditional basis, then every multiplication operator $L_{A} R_{B}$ on $\mathcal{L}(X)$ which is strictly singular is necessarily weakly compact (Corollary 4.2). This is also related to the fact that the composition of two strictly singular operators on certain spaces yields a compact operator.

Finally, in the last part of the paper, we provide a factorization property of strictly singular operators on L_{p}, based on the classical interpolation construction due to W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński in [4] and another factorization result of W. B. Johnson given in [8]. Namely, every such operator factors through a certain Banach lattice, sufficiently separated from L_{p}, and through ℓ_{p} (see Theorem 6.2 for the precise statement). As a consequence of this fact, we show that when A, B are strictly singular on L_{p}, the multiplication operator $L_{A} R_{B}$ factors through the space of compact operators on ℓ_{p} (Theorem 6.9).

2. Preliminaries

Recall that an operator is compact when it maps the unit ball into a relatively compact set. Since the unit ball of an infinite-dimensional Banach space is never compact, it follows that compact operators are in particular strictly singular. Whereas the former is a purely topological notion, the latter is really about infinite-dimensional structure. Moreover, it is well known that an operator $T: X \rightarrow Y$ is strictly singular if and only if, for each infinite-dimensional subspace $X_{0} \subseteq X$, there is a further infinite-dimensional $X_{1} \subseteq X_{0}$ such that the restriction $\left.T\right|_{X_{1}}$ is compact (cf. [13, Proposition 2.c.4]).

Occasionally, we will need certain generalizations of strictly singular operators. Given some Banach space X, an operator $T: Y \rightarrow Z$ is called X-singular provided it is not an isomorphism when restricted to any subspace of Y linearly isomorphic to X. Particularly useful classes are that of ℓ_{p}-singular or c_{0}-singular
operators (see [9]). For instance, for an operator $T: L_{p} \rightarrow L_{p}$ being ℓ_{2}-singular and ℓ_{p}-singular is enough to get strict singularity [25].

Given Banach spaces X, Y_{1}, Y_{2} and an operator $A: Y_{1} \rightarrow Y_{2}$ let us consider the left multiplication operator

$$
\begin{aligned}
L_{A ; X}: \mathcal{L}\left(X, Y_{1}\right) & \longrightarrow \mathcal{L}\left(X, Y_{2}\right) \\
T & \longmapsto A T
\end{aligned}
$$

as well as the right multiplication operator

$$
\begin{aligned}
R_{A ; X}: \mathcal{L}\left(Y_{2}, X\right) & \longrightarrow \mathcal{L}\left(Y_{1}, X\right) \\
T & \longmapsto T A
\end{aligned}
$$

When there is no ambiguity about the space X, we will simply write L_{A} and R_{A} instead of $L_{A ; X}$ and $R_{A ; X}$.

Let $X_{1}, X_{2}, X_{3}, X_{4}$ be Banach spaces, $A \in \mathcal{L}\left(X_{1}, X_{2}\right)$ and $B \in \mathcal{L}\left(X_{3}, X_{4}\right)$. We consider the multiplication operator $L_{A} R_{B}: \mathcal{L}\left(X_{4}, X_{1}\right) \rightarrow \mathcal{L}\left(X_{3}, X_{2}\right)$ given by $L_{A} R_{B}(T)=A T B$.

Note that, if we choose $x_{1} \in X_{1}, x_{2}^{*} \in X_{2}^{*}, x_{3} \in X_{3}, x_{4}^{*} \in X_{4}^{*}$ such that $x_{2}^{*}\left(A x_{1}\right)=1=x_{4}^{*}\left(B x_{3}\right)$, then after considering the operators

$$
\begin{array}{rlrl}
J_{x_{4}^{*}}: X_{1} & \longrightarrow \mathcal{L}\left(X_{4}, X_{1}\right) & J_{x_{1}}: X_{4}^{*} & \longrightarrow \mathcal{L}\left(X_{4}, X_{1}\right) \\
x & \longmapsto x_{4}^{*} \otimes x & x^{*} & \longmapsto x^{*} \otimes x_{1} \\
\delta_{x_{3}}: \mathcal{L}\left(X_{3}, X_{2}\right) & \longrightarrow X_{2} & \delta_{x_{2}^{*}}: \mathcal{L}\left(X_{3}, X_{2}\right) & \longrightarrow X_{3}^{*} \\
T & \longmapsto T x_{3} & T & \longmapsto T^{*} x_{2}^{*}
\end{array}
$$

we have the following commutative diagrams:

This shows that A and B^{*} belong to the ideal generated by $L_{A} R_{B}$. In particular, if $L_{A} R_{B}$ is strictly singular, then so are A and B^{*}. Note that in general, the class of strictly singular operators is not closed under taking adjoints.

In the following, $\mathcal{S}(X, Y)$ and $\mathcal{K}(X, Y)$ will denote the spaces of strictly singular and of compact operators, respectively, between the Banach spaces X and Y.

3. Strict singularity and compactness

In this section we will study the relation between strict singularity and compactness of the multiplication operator.

When one of the operator coefficients is compact, the other strictly singular, and the space X has the approximation property, which allows us to approximate compact operators by finite rank ones, then the multiplication operator is strictly singular. A version of this fact for more general operator ideals can be found in [16], but we include here a simple proof for convenience and to motivate further results.

Proposition 3.1: Let X, Y be Banach spaces such that Y has the approximation property and let $A, B \in \mathcal{L}(X, Y)$. If $A \in \mathcal{S}(X, Y)$ and $B \in \mathcal{K}(X, Y)$, then $L_{A} R_{B}: \mathcal{L}(Y, X) \rightarrow \mathcal{L}(X, Y)$ is strictly singular.

Proof. Let us start with a weaker version of the statement.
Claim: If A is strictly singular and B is a rank one operator, then $L_{A} R_{B}$ is strictly singular.

Indeed, let $y_{0} \in Y$ and $x_{0}^{*} \in X^{*}$ such that $B(x)=x_{0}^{*}(x) y_{0}$ for every $x \in X$. Suppose $L_{A} R_{B}$ is not strictly singular; then there exist a normalised basic sequence $\left(T_{n}\right) \subseteq \mathcal{L}(Y, X)$ and $\alpha>0$ such that

$$
\begin{equation*}
\left\|\sum_{n} a_{n} A T_{n} B\right\| \geq \alpha\left\|\sum_{n} a_{n} T_{n}\right\| \tag{1}
\end{equation*}
$$

for every sequence $\left(a_{n}\right)$ of scalars.
Without loss of generality, we can assume that the linear span of $\left(T_{n} y_{0}\right)$ in X is infinite dimensional; indeed, otherwise pick $z^{*} \in Y^{*}$ such that

$$
\left\|z^{*}\right\|=1 \quad \text { and } \quad z^{*}\left(y_{0}\right) \neq 0
$$

and for $\varepsilon>0$, let $\left(x_{n}\right)$ be an infinite sequence of linearly independent vectors in X with $\left\|x_{n}\right\|=\varepsilon 2^{-n}$, and let

$$
\tilde{T}_{n}(y)=T_{n}(y)+z^{*}(y) x_{n}
$$

Note that the linear span of $\left(\tilde{T}_{n}\left(y_{0}\right)\right)$ is infinite dimensional and inequality (1) also holds for \tilde{T}_{n}, once $\varepsilon>0$ is small enough, as

$$
\left\|T_{n}-\tilde{T}_{n}\right\| \leq \varepsilon 2^{-n}
$$

We have

$$
\begin{aligned}
\left\|A\left(\sum_{n} a_{n} T_{n} y_{0}\right)\right\| & =\left\|\sum_{n} a_{n} A T_{n} y_{0}\right\| \geq \frac{1}{\left\|x_{0}^{*}\right\|}\left\|\sum_{n} a_{n} A T_{n} B\right\| \\
& \geq \frac{\alpha}{\left\|x_{0}^{*}\right\|}\left\|\sum_{n} a_{n} T_{n}\right\| \\
& \geq \frac{\alpha}{\left\|x_{0}^{*}\right\|\left\|y_{0}\right\|}\left\|\sum_{n} a_{n} T_{n} y_{0}\right\|
\end{aligned}
$$

Hence, A is bounded below on the span of $\left(T_{n} x_{0}\right)$ which is a contradiction with the fact that A is strictly singular, and the claim is proved.

Now, if B has finite rank, say $B=\sum_{i=1}^{n} B_{i}$ with B_{i} of rank one, then $L_{A} R_{B}=\sum_{i=1}^{n} L_{A} R_{B_{i}}$ is strictly singular as a linear combination of strictly singular operators.

Finally, for a compact operator B, since Y has the approximation property, we can find a sequence of finite rank operators $\left(B_{n}\right)$ with $\left\|B-B_{n}\right\| \rightarrow 0$. Each of $L_{A} R_{B_{n}}$ is strictly singular by the previous part of the proof, and

$$
\left\|L_{A} R_{B}-L_{A} R_{B_{n}}\right\| \rightarrow 0
$$

thus, $L_{A} R_{B}$ is strictly singular too.

By passing to adjoints, we easily have the following:
Corollary 3.2: Let X, Y be Banach spaces such that X^{*} has the approximation property and let $A, B \in \mathcal{L}(X, Y)$. If $A \in \mathcal{K}(X, Y)$ and $B^{*} \in \mathcal{S}\left(Y^{*}, X^{*}\right)$, then $L_{A} R_{B}: \mathcal{L}(X, Y) \rightarrow \mathcal{L}(X, Y)$ is strictly singular.

It was proved in [15] that, when X is a space of the form L_{p} for $1 \leq p \leq \infty$, $C(K)$ for K compact Hausdorff, or $\mathcal{L}^{1}, L_{A} R_{B}$ is strictly singular in $\mathcal{L}(X)$ if and only if so are A and B^{*}. It should be noted that the composition of two strictly singular endomorphisms on X for every space in the previous list yields a compact operator. On the other hand, for the spaces $\ell_{p} \oplus \ell_{q} \oplus \ell_{r}$ with $1<p<q<r<\infty$ and on $L_{p}[0,1] \oplus L_{q}[0,1]$ with $1<p<q<\infty, p \neq 2 \neq q$, there are examples of strictly singular operators A and B^{*} such that $L_{A} R_{B}$ is not strictly singular. And in fact, these examples are made out of strictly singular operator whose composition is not compact. The following observation together with the results of the next section provide a reason for this.

Proposition 3.3: For a Banach space X the following statements are equivalent:
(a) For every $A, B \in \mathcal{L}(X)$ with A and B^{*} strictly singular, it follows that $A B$ is compact.
(b) For every $A, B \in \mathcal{L}(X)$ with A and B^{*} strictly singular, the operator $L_{A} R_{B}$ maps $\mathcal{L}(X)$ into $\mathcal{K}(X)$.

Proof. (a) $\Rightarrow(\mathrm{b})$: Let $A, B \in \mathcal{L}(X)$ such that A and B^{*} are strictly singular. Since strictly singular operators form an ideal in $\mathcal{L}(X)$, for every $T \in \mathcal{L}(X)$ we have that $A T B$ is compact. Hence, $L_{A} R_{B}$ maps $\mathcal{L}(X)$ into $\mathcal{K}(X)$.
(b) $\Rightarrow(\mathrm{a})$: Suppose $L_{A} R_{B}(T) \in \mathcal{K}(X)$ for $A, B, T \in \mathcal{L}(X)$, with A and B^{*} strictly singular. In particular, we have that $A B=L_{A} R_{B}\left(I_{X}\right) \in \mathcal{K}(X)$.

The fact that on L_{p} spaces the composition of two strictly singular operators yields a compact operator is due to V. D. Milman [18], and has recently been extended to further classes of Banach spaces (see [5]); these include for instance the Lorentz spaces $\Lambda(w, q)$ and certain Orlicz spaces. It is conceivable that the results in [15] extend to these larger classes of spaces.

The condition that B^{*} above, and not B, should be strictly singular is clarified by the following example. Let $X=\ell_{1} \oplus c_{0}$. Using the fact that strictly singular and compact operators coincide on ℓ_{1} and c_{0}, and that $\mathcal{L}\left(c_{0}, \ell_{1}\right)=\mathcal{K}\left(c_{0}, \ell_{1}\right)$ it is not hard to check that, $A B \in \mathcal{K}(X)$ whenever $A, B \in \mathcal{S}(X)$. However, let $B(x, y)=(0, q x)$ where $q \in \mathcal{L}\left(\ell_{1}, c_{0}\right)$ is a quotient operator. It follows that $L_{A} R_{B}$ cannot be strictly singular (because B^{*} is not strictly singular).

4. Strictly singular multiplication is weakly compact

It is well known that strictly singular operators on $C(K)$ spaces are weakly compact [20]. This fact can also be extended to operators on C^{*}-algebras [19, Proposition 3.1], and we will see this is also the case for multiplication operators on $\mathcal{L}(X)$, for a large class of spaces X.

Our main reference for weak compactness of multiplication operators on $\mathcal{L}(X)$ is [21]. In particular, by [21, Corollary 2.4], if X is a reflexive space with the approximation property, the multiplication operator $L_{A} R_{B}$ is weakly compact if and only if $A T B \in \mathcal{K}(X)$ for every $T \in \mathcal{L}(X)$.

Proposition 4.1: Let X be a reflexive Banach space with unconditional basis, and $A, B \in \mathcal{L}(X)$. If $L_{A} R_{B}$ is c_{0}-singular, then $A B \in \mathcal{K}(X)$.

Proof. Suppose $A B \notin \mathcal{K}(X)$. Since X is reflexive, we can find a weakly null sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \subseteq X$ such that $\left\|A B x_{n}\right\| \geq \delta>0$ for every $n \in \mathbb{N}$. In particular, $\left(B x_{n}\right)_{n \in \mathbb{N}}$ is also weakly null, and $\left\|B x_{n}\right\| \geq \delta /\|A\|$ for each $n \in \mathbb{N}$. Now, by a standard perturbation argument we can assume that $\left(B x_{n}\right)_{n \in \mathbb{N}}$ is a block sequence with respect to the unconditional basis of X. Hence, we can consider $\left(U_{n}\right)_{n \in \mathbb{N}} \subseteq \mathcal{L}(X)$, a sequence of projections onto each of the corresponding blocks, that is $U_{n} \perp U_{m}$ with

$$
U_{n} B x_{n}=B x_{n} .
$$

We claim that $L_{A} R_{B}$ is an isomorphism on the subspace $\left[U_{n}\right]$. To see this, first note that, using the unconditionality of the basis of X, it is easy to check that for any sequence of scalars $\left(a_{n}\right)_{n \in \mathbb{N}}$ we have

$$
\begin{equation*}
\left\|\sum_{n} a_{n} U_{n}\right\| \approx \max _{n}\left|a_{n}\right| . \tag{2}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
\left\|\sum_{n} a_{n} A U_{n} B\right\|=\left\|L_{A} R_{B}\left(\sum_{n} a_{n} U_{n}\right)\right\| \lesssim\left\|L_{A} R_{B}\right\| \max _{n}\left|a_{n}\right| \tag{3}
\end{equation*}
$$

While, on the other hand, we have

$$
\begin{align*}
\left\|\sum_{n} a_{n} A U_{n} B\right\| & \gtrsim \sup _{j}\left\|\sum_{n} a_{n} A U_{n} B x_{j}\right\| \tag{4}\\
& =\sup _{j}\left\|a_{j} A U_{j} B x_{j}\right\| \geq \delta \max _{j}\left|a_{j}\right| .
\end{align*}
$$

Hence, $\left.L_{A} R_{B}\right|_{\left[U_{n}\right]}$ is an isomorphism as claimed. Since $\left(U_{n}\right)$ is equivalent to the unit basis of c_{0}, the proof is finished.

Corollary 4.2: Let X be a Banach space, and $A, B \in \mathcal{L}(X)$. Consider the following statements for $L_{A} R_{B}: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$:
(i) $L_{A} R_{B}$ is strictly singular.
(ii) $L_{A} R_{B}$ is c_{0}-singular.
(iii) $L_{A} R_{B}$ is weakly compact.

Clearly, (i) \Rightarrow (ii). If X is reflexive with an unconditional basis, then we have (ii) \Rightarrow (iii).

Proof. Suppose $L_{A} R_{B}: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ is c_{0}-singular. Then, for every $T \in \mathcal{L}(X)$, we have that $L_{A} R_{B} L_{T}=L_{A T} R_{B}$ is c_{0}-singular. Hence, by Proposition 4.1, it follows that $A T B \in \mathcal{K}(X)$ for every $T \in \mathcal{L}(X)$. As a result, $L_{A} R_{B}(\mathcal{L}(X)) \subseteq \mathcal{K}(X)$, and [21, Corollary 2.4] yields the claim.

Note that for every infinite-dimensional reflexive space X, there are weakly compact multiplication operators on $\mathcal{L}(X)$ which are not strictly singular. Indeed, let $A \in \mathcal{K}(X)$ and $B=I_{X}$; then by [21, Proposition 2.8] $L_{A} R_{B}$ is weakly compact, but $L_{A} R_{B}$ is not strictly singular as B^{*} is not strictly singular. The same would hold for non-reflexive X as far as there is a weakly compact operator $B \in \mathcal{L}(X)$ such that B^{*} is not strictly singular.

Remark 4.3: Proposition 4.1 can be extended to the more general case when X has an unconditional finite-dimensional decomposition.

5. Factorization of multiplication operators

A classical result by J. Holub [7, Theorem 1] states that every subspace of $\mathcal{K}\left(\ell_{2}\right)$ is either isomorphic to ℓ_{2} or contains a further subspace isomorphic to c_{0}. We need a version of this dichotomy for $\mathcal{K}\left(\ell_{p}, \ell_{q}\right)$. Throughout this section we assume $1<p, q<\infty$.

First, recall that to any operator $T \in \mathcal{K}\left(\ell_{p}, \ell_{q}\right)$, we can associate the infinite matrix given by $T_{i j}=e_{i}^{*}\left(T e_{j}\right)$ for $i, j \in \mathbb{N}$, where e_{i}^{*}, e_{j} denote the (unconditional) unit vector basis of $\ell_{q^{\prime}}$ and ℓ_{p}, respectively. For $n \in \mathbb{N}$, we will consider two particular projections in $\mathcal{K}\left(\ell_{p}, \ell_{q}\right), E_{n}$ and P_{n}, given for $T \in \mathcal{K}\left(\ell_{p}, \ell_{q}\right)$, by

$$
\begin{aligned}
& E_{n}(T)_{i j}= \begin{cases}T_{i j} & \text { if } \min \{i, j\}<n \\
0 & \text { otherwise }\end{cases} \\
& P_{n}(T)_{i j}= \begin{cases}T_{i j} & \text { if } \max \{i, j\} \leq n \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

It is well known that these define a family of uniformly bounded projections on $\mathcal{K}\left(\ell_{p}, \ell_{q}\right)$. Let $C=\sup _{n \in \mathbb{N}} \max \left\{\left\|P_{n}\right\|,\left\|E_{n}\right\|\right\}$.

Given natural numbers $m<n$, and $1<p<\infty$, let $Q_{[m, n]}^{(p)}$ denote the basis projection onto the span of $\left(e_{i}\right)_{i=m}^{n}$ in ℓ_{p}; or, in other words, for $\left(x_{i}\right) \in \ell_{p}$,

$$
Q_{[m, n]}^{(p)}\left(\sum_{i \in \mathbb{N}} x_{i} e_{i}\right)=\sum_{i=m}^{n} x_{i} e_{i} .
$$

Clearly, if $m_{1}<n_{1}<m_{2}<n_{2}$, then we have

$$
Q_{\left[m_{1}, n_{1}\right]}^{(p)} Q_{\left[m_{2}, n_{2}\right]}^{(p)}=Q_{\left[m_{2}, n_{2}\right]}^{(p)} Q_{\left[m_{1}, n_{1}\right]}^{(p)}=0 .
$$

We will say that $\left(S_{k}\right) \subset \mathcal{K}\left(\ell_{p}, \ell_{q}\right)$ is a block-diagonal sequence when for every $k \in \mathbb{N}$ there exist $p_{k}<q_{k}<p_{k+1}$ so that,

$$
S_{k}=Q_{\left[p_{k}, q_{k}\right]}^{(q)} S_{k} Q_{\left[p_{k}, q_{k}\right]}^{(p)}
$$

Also, a single operator $S \in \mathcal{L}\left(\ell_{p}, \ell_{q}\right)$ is called block-diagonal if there is a block-diagonal sequence $\left(S_{k}\right)$ such that for every $x \in \ell_{p}$,

$$
S x=\sum_{k \in \mathbb{N}} S_{k} x
$$

Lemma 5.1: Let $1<p, q<\infty$, and $\left(S_{k}\right) \subset \mathcal{K}\left(\ell_{p}, \ell_{q}\right)$ a semi-normalised blockdiagonal sequence. If $p \leq q$, then $\left(S_{k}\right)$ is equivalent to the unit vector basis of c_{0}. If $q<p$, then $\left(S_{k}\right)$ is equivalent to the unit vector basis of ℓ_{r} with $r=\frac{p q}{p-q}$.

Proof. By hypothesis, for every $k \in \mathbb{N}$ there exist $p_{k}<q_{k}<p_{k+1}$ so that

$$
S_{k}=Q_{\left[p_{k}, q_{k}\right]}^{(q)} S_{k} Q_{\left[p_{k}, q_{k}\right]}^{(p)}
$$

Suppose first that $p \leq q$, and let us see that in this case, $\left(S_{k}\right)$ is equivalent to the unit vector basis of c_{0}. Indeed, given scalars $\left(a_{k}\right)$, since $c=\inf _{k}\left\|S_{k}\right\|>0$, for every $k \in \mathbb{N}$ there is $x_{k} \in \ell_{p}$ with $\left\|x_{k}\right\|_{p}=1,\left\|S_{k} x_{k}\right\|_{q} \geq c$ and $Q_{\left[p_{k}, q_{k}\right]}^{(p)} x_{k}=x_{k}$. Thus, for every $k \in \mathbb{N}$,

$$
\begin{aligned}
\left\|\sum_{j \in \mathbb{N}} a_{j} S_{j}\right\| & \geq\left\|\sum_{j \in \mathbb{N}} a_{j} S_{j}\left(x_{k}\right)\right\|_{q}=\left\|\sum_{j \in \mathbb{N}} a_{j} Q_{\left[p_{j}, q_{j}\right]}^{(q)} S_{j} Q_{\left[p_{j}, q_{j}\right]}^{(p)}\left(x_{k}\right)\right\|_{q} \\
& =\left\|a_{k} S_{k}\left(x_{k}\right)\right\|_{q} \geq c\left|a_{k}\right|
\end{aligned}
$$

which yields the estimate

$$
\left\|\sum_{j \in \mathbb{N}} a_{j} S_{j}\right\| \geq c \sup _{j \in \mathbb{N}}\left|a_{j}\right|
$$

On the other hand, let $K=\sup _{k}\left\|S_{k}\right\|$ and for $x \in \ell_{p}$ with $\|x\|_{p}=1$, let $x_{k}=Q_{\left[p_{k}, q_{k}\right]}^{(p)} x$. Note that

$$
S_{k}(x)=S_{k}\left(x_{k}\right)
$$

Hence, for scalars $\left(a_{k}\right)$ we have

$$
\begin{aligned}
\left\|\sum_{j \in \mathbb{N}} a_{j} S_{j} x\right\|_{q} & =\left(\sum_{j \in \mathbb{N}}\left\|a_{j} S_{j}(x)\right\|_{q}^{q}\right)^{\frac{1}{q}} \\
& =\left(\sum_{j \in \mathbb{N}}\left\|a_{j} S_{j}\left(x_{j}\right)\right\|_{q}^{q}\right)^{\frac{1}{q}} \\
& \leq \sup _{j \in \mathbb{N}}\left|a_{j}\right|\left\|S_{j}\right\|\left(\sum_{j \in \mathbb{N}}\left\|x_{j}\right\|_{p}^{p}\right)^{\frac{1}{p}} \\
& \leq K \sup _{j \in \mathbb{N}}\left|a_{j}\right|
\end{aligned}
$$

Therefore, $\left(S_{k}\right)$ is equivalent to the unit vector basis of c_{0} as claimed.
Now, suppose that $q<p$. As above, given scalars $\left(a_{j}\right)$, letting $K=\sup _{j}\left\|S_{j}\right\|$, we have

$$
\begin{aligned}
\left\|\sum_{j \in \mathbb{N}} a_{j} S_{j}\right\| & =\sup _{\|x\|_{p} \leq 1}\left\|\sum_{j \in \mathbb{N}} a_{j} S_{j} x\right\|_{q} \\
& =\sup _{\|x\|_{p} \leq 1}\left\|\sum_{j \in \mathbb{N}} a_{j} Q_{\left[p_{j}, q_{j}\right]}^{(q)} S_{j} Q_{\left[p_{j}, q_{j}\right]}^{(p)} x\right\|_{q} \\
& =\sup _{\|x\|_{p} \leq 1}\left(\sum_{j \in \mathbb{N}}\left\|a_{j} Q_{\left[p_{j}, q_{j}\right]}^{(q)} S_{j} Q_{\left[p_{j}, q_{j}\right]}^{(p)} x\right\|_{q}^{q}\right)^{\frac{1}{q}} \\
& \leq K \sup _{\|x\|_{p} \leq 1}\left(\sum_{j \in \mathbb{N}}\left|a_{j}\right|^{q}\left\|Q_{\left[p_{j}, q_{j}\right]}^{(p)} x\right\|_{p}^{q}\right)^{\frac{1}{q}} .
\end{aligned}
$$

Now, if we set $s=\frac{p}{q}>1$ and $\frac{1}{s}+\frac{1}{s^{\prime}}=1$, then by Hölder's inequality it follows that

$$
\begin{aligned}
\left\|\sum_{j \in \mathbb{N}} a_{j} S_{j}\right\| & \leq K \sup _{\|x\|_{p} \leq 1}\left(\sum_{j \in \mathbb{N}}\left|a_{j}\right|^{q s^{\prime}}\right)^{\frac{1}{q s^{\prime}}}\left(\sum_{j \in \mathbb{N}}\left\|Q_{j}^{(p)} x\right\|_{p}^{q s}\right)^{\frac{1}{q s}} \\
& \leq K\left(\sum_{j \in \mathbb{N}}\left|a_{j}\right|^{r}\right)^{\frac{1}{r}}
\end{aligned}
$$

where $r=\frac{p q}{p-q}$.

For the converse inequality, as above, since $c=\inf _{k}\left\|S_{k}\right\|>0$, for every $k \in \mathbb{N}$ there is $x_{k} \in \ell_{p}$ with $\left\|x_{k}\right\|_{p}=1,\left\|S_{k} x_{k}\right\|_{q} \geq c$ with $Q_{\left[p_{k}, q_{k}\right]}^{(p)} x_{k}=x_{k}$. Given any sequence $\left(a_{k}\right) \in \ell_{r}$, let $x=\sum_{k}\left|a_{k}\right|^{\frac{r-q}{q}} x_{k}$. Note that

$$
\|x\|_{p}=\left(\sum_{k \in \mathbb{N}}\left|a_{k}\right|^{\frac{r-q}{q} p}\right)^{\frac{1}{p}}=\left(\sum_{k \in \mathbb{N}}\left|a_{k}\right|^{r}\right)^{\frac{1}{p}} .
$$

Hence, we have

$$
\begin{aligned}
\left\|\sum_{j \in \mathbb{N}} a_{j} S_{j}\right\| & \geq \frac{\left\|\sum_{j \in \mathbb{N}} a_{j} S_{j} x\right\|_{q}}{\|x\|_{p}}=\frac{\left(\sum_{j \in \mathbb{N}}\left\|a_{j} S_{j} x\right\|_{q}^{q}\right)^{\frac{1}{q}}}{\|x\|_{p}} \\
& \geq c\left(\sum_{j \in \mathbb{N}}\left|a_{j}\right|^{r}\right)^{\frac{1}{q}-\frac{1}{p}}=c\left(\sum_{j \in \mathbb{N}}\left|a_{j}\right|^{r}\right)^{\frac{1}{r}}
\end{aligned}
$$

as claimed.
Lemma 5.2: Let $1<p, q<\infty, \frac{1}{p}+\frac{1}{p^{\prime}}=1$ and M a closed infinite-dimensional subspace of $\mathcal{K}\left(\ell_{p}, \ell_{q}\right)$. The following dichotomy holds:
(1) There is $n \in \mathbb{N}$ such that $\left.E_{n}\right|_{M}$ is an isomorphism, in which case M contains an isomorphic copy of ℓ_{q} or $\ell_{p^{\prime}}$; or,
(2) there exist a normalised sequence $\left(T_{k}\right) \subset M$ and a semi-normalised block-diagonal sequence $\left(S_{k}\right)$ such that $\left\|T_{k}-S_{k}\right\| \rightarrow 0$ as $k \rightarrow \infty$. In particular, $\left(T_{k}\right)$ is equivalent to the unit vector basis of c_{0} when $p \leq q$, and to the unit vector basis of ℓ_{r} with $r=\frac{p q}{p-q}$, when $q<p$.

Proof. Suppose first that there is $n \in \mathbb{N}$ such that the restriction $\left.E_{n}\right|_{M}$ is an isomorphism. Since the range of E_{n} is isomorphic to $\ell_{q} \oplus \ell_{p^{\prime}}$ it follows that M contains a subspace isomorphic to either ℓ_{q} or $\ell_{p^{\prime}}$.

On the other hand, suppose that for every $n \in \mathbb{N},\left.E_{n}\right|_{M}$ is never an isomorphism. In this case, we will inductively construct two sequences as required. Indeed, pick arbitrary $T_{1} \in M$ with $\left\|T_{1}\right\|=1$ and, by compactness, let $n_{1} \in \mathbb{N}$ such that

$$
\left\|T_{1}-P_{n_{1}}\left(T_{1}\right)\right\|<\frac{1}{2}
$$

Since $\left.E_{n_{1}}\right|_{M}$ is not an isomorphism, there is $T_{2} \in M$ with $\left\|T_{2}\right\|=1$ and

$$
\left\|E_{n_{1}}\left(T_{2}\right)\right\|<\frac{1}{2}
$$

Let $n_{2} \in \mathbb{N}$ be such that

$$
\left\|T_{2}-P_{n_{2}}\left(T_{2}\right)\right\|<\frac{1}{4}
$$

Continuing in this way, we produce inductively an increasing sequence $\left(n_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ and $\left(T_{k}\right)_{k \in \mathbb{N}} \subseteq M$ such that for every $k \in \mathbb{N}$:
(1) $\left\|T_{k}\right\|=1$,
(2) $\left\|E_{n_{k}}\left(T_{k+1}\right)\right\|<2^{-k}$,
(3) $\left\|T_{k}-P_{n_{k}}\left(T_{k}\right)\right\|<2^{-k}$.

Let $S_{k}=P_{n_{k}}\left(T_{k}\right)-E_{n_{k-1}} P_{n_{k}}\left(T_{k}\right)$, which clearly satisfy

$$
S_{k}=Q_{\left[n_{k-1}+1, n_{k}\right]}^{(q)} S_{k} Q_{\left[n_{k-1}+1, n_{k}\right]}^{(p)}
$$

We have

$$
\begin{aligned}
\left\|T_{k}-S_{k}\right\| & \leq\left\|T_{k}-P_{n_{k}}\left(T_{k}\right)\right\|+\left\|E_{n_{k-1}}\left(T_{k}\right)\right\|+\left\|E_{n_{k-1}}\left(T_{k}-P_{n_{k}}\left(T_{k}\right)\right)\right\| \\
& \leq(C+3) 2^{-k}
\end{aligned}
$$

In particular, $\left(T_{k}\right)$ and $\left(S_{k}\right)$ are equivalent basic sequences in $\mathcal{K}\left(\ell_{p}, \ell_{q}\right)$. The conclussion follows from Lemma 5.1.

Remark 5.3: The previous argument also holds for $\mathcal{K}\left(\left(\oplus X_{n}\right)_{\ell_{p}},\left(\oplus Y_{n}\right)_{\ell_{q}}\right)$, where $\left(X_{n}\right)$ and $\left(Y_{n}\right)$ are sequences of finite-dimensional subspaces.

Remark 5.4: When $1<q<p<\infty$, since $\mathcal{L}\left(\ell_{p}, \ell_{q}\right)=\mathcal{K}\left(\ell_{p}, \ell_{q}\right)$, by [11, Corollary 2], we know that $\mathcal{K}\left(\ell_{p}, \ell_{q}\right)$ is a reflexive space. The above lemma is somehow more informative, since any infinite-dimensional subspace of $\mathcal{K}\left(\ell_{p}, \ell_{q}\right)$ contains one of the reflexive spaces $\ell_{q}, \ell_{p^{\prime}}$ or ℓ_{r}.

Theorem 5.5: Let $p<q$ and $A, B \in \mathcal{L}\left(\ell_{p}, \ell_{q}\right)$. Then

$$
L_{A} R_{B}: \mathcal{L}\left(\ell_{q}, \ell_{p}\right) \rightarrow \mathcal{L}\left(\ell_{p}, \ell_{q}\right)
$$

is strictly singular.
Proof. Note that by Pitt's theorem $\mathcal{L}\left(\ell_{q}, \ell_{p}\right)=\mathcal{K}\left(\ell_{q}, \ell_{p}\right)$, so we simply consider the operator $L_{A} R_{B}: \mathcal{K}\left(\ell_{q}, \ell_{p}\right) \rightarrow \mathcal{K}\left(\ell_{p}, \ell_{q}\right)$.

First, let us assume that A, B are both block-diagonal operators. Suppose $L_{A} R_{B}$ is not strictly singular. Therefore, there exists a closed subspace $M \subseteq \mathcal{K}\left(\ell_{q}, \ell_{p}\right)$ such that $\left.L_{A} R_{B}\right|_{M}$ is an isomorphism. By Lemma 5.2, either
(1) M contains a subspace isomorphic to ℓ_{p} or $\ell_{q^{\prime}}$; or,
(2) there exist a normalised sequence $\left(T_{n}\right) \subset M$ and a semi-normalised block-diagonal sequence $\left(S_{n}\right) \subset \mathcal{K}\left(\ell_{q}, \ell_{p}\right)$ such that $\left\|T_{n}-S_{n}\right\| \rightarrow 0$.

In case (1), by another application of Lemma 5.2 to the subspace

$$
L_{A} R_{B}(M) \subset \mathcal{K}\left(\ell_{p}, \ell_{q}\right),
$$

we know that this space contains a further subspace which is isomorphic to $\ell_{q}, \ell_{p^{\prime}}$ or c_{0}. Since $p \neq q$, and $\left.L_{A} R_{B}\right|_{M}$ is an isomorphism, the only possibility would be that $p=p^{\prime}=2$ or $q=q^{\prime}=2$. In any of these cases, note that we have the factorizations

In particular, M is isomorphic to a subspace of $\mathcal{K}\left(\ell_{p}\right)$ and also to a subspace of $\mathcal{K}\left(\ell_{q}\right)$. As p and q cannot both be equal to 2 , by Lemma 5.2 , we arrive at a contradiction. Hence, in case (1), $\left.L_{A} R_{B}\right|_{M}$ cannot be an isomorphism.

Assume now case (2) holds. As A and B are block-diagonal operators, there exist $p_{k}<q_{k}<p_{k+1}$ and $r_{k}<s_{k}<r_{k+1}$ such that for $x \in \ell_{p}$ we have

$$
\begin{aligned}
& A x=\sum_{k \in \mathbb{N}} Q_{\left[p_{k}, q_{k}\right]}^{(q)} A Q_{\left[p_{k}, q_{k}\right]}^{(p)} x, \\
& B x=\sum_{k \in \mathbb{N}} Q_{\left[r_{k}, s_{k}\right]}^{(q)} B Q_{\left[r_{k}, s_{k}\right]}^{(p)} x .
\end{aligned}
$$

Also, there exist $m_{k}<n_{k}$ such that

$$
S_{k}=Q_{\left[m_{k}, n_{k}\right]}^{(q)} S_{k} Q_{\left[m_{k}, n_{k}\right]}^{(p)}
$$

For each $k \in \mathbb{N}$, let

$$
\tilde{m}_{k}=\min \left\{\min \left\{p_{j}:\left[p_{j}, q_{j}\right] \cap\left[m_{k}, n_{k}\right] \neq \emptyset\right\}, \min \left\{r_{j}:\left[r_{j}, s_{j}\right] \cap\left[m_{k}, n_{k}\right] \neq \emptyset\right\}\right\}
$$

and

$$
\tilde{n}_{k}=\max \left\{\max \left\{q_{j}:\left[p_{j}, q_{j}\right] \cap\left[m_{k}, n_{k}\right] \neq \emptyset\right\}, \max \left\{s_{j}:\left[r_{j}, s_{j}\right] \cap\left[m_{k}, n_{k}\right] \neq \emptyset\right\}\right\}
$$

We extract a subsequence of $\left(S_{j}\right)$ as follows: let $j_{1}=1$ and for $k \geq 1$, take j_{k} large enough so that $\tilde{n}_{j_{k-1}}<\tilde{m}_{j_{k}}$. By construction, it follows that for every $k \in \mathbb{N}$

$$
A S_{j_{k}} B=Q_{\left[\tilde{m}_{j_{k}}, \tilde{n}_{j_{k}}\right]}^{(q)} A S_{j_{k}} B Q_{\left[\tilde{m}_{j_{k}}, \tilde{n}_{j_{k}}\right]}^{(p)}
$$

Hence, $\left(A S_{j_{k}} B\right)$ is a semi-normalised block-diagonal sequence in $\mathcal{K}\left(\ell_{p}, \ell_{q}\right)$, and by Lemma 5.1, $\left(A S_{j_{k}} B\right)$ is equivalent to the unit vector basis of c_{0}. Moreover, as

$$
\left\|L_{A} R_{B}\left(T_{j_{k}}-S_{j_{k}}\right)\right\| \rightarrow 0 \quad \text { when } k \rightarrow \infty
$$

by standard perturbation we have that $\left(A T_{j_{k}} B\right)$ is also equivalent to the unit vector basis of c_{0}. However, by Lemma 5.1 , we know that $\left(S_{j_{k}}\right)$ and $\left(T_{j_{k}}\right)$ are equivalent to the unit vector basis or ℓ_{r} with $r=\frac{p q}{p-q}$. This is a contradiction with the assumption that $\left.L_{A} R_{B}\right|_{M}$ is an isomorphism.

So far, we have shown that when both A and B are block-diagonal operators, then $L_{A} R_{B}: \mathcal{K}\left(\ell_{q}, \ell_{p}\right) \rightarrow \mathcal{K}\left(\ell_{p}, \ell_{q}\right)$ is strictly singular. Now, for arbitrary $A, B \in \mathcal{L}\left(\ell_{p}, \ell_{q}\right)$, and every $\varepsilon>0$, by [23, Lemma 4.4(i)], there exist blockdiagonal operators $A_{1}^{\varepsilon}, A_{2}^{\varepsilon}, B_{1}^{\varepsilon}, B_{2}^{\varepsilon} \in \mathcal{L}\left(\ell_{p}, \ell_{q}\right)$ such that

$$
\left\|A-\left(A_{1}^{\varepsilon}+A_{2}^{\varepsilon}\right)\right\|<\varepsilon, \quad\left\|B-\left(B_{1}^{\varepsilon}+B_{2}^{\varepsilon}\right)\right\|<\varepsilon
$$

Clearly, for every $\varepsilon>0$ we have

$$
L_{A_{1}^{\varepsilon}+A_{2}^{\varepsilon}} R_{B_{1}^{\varepsilon}+B_{2}^{\varepsilon}}=L_{A_{1}^{\varepsilon}} R_{B_{1}^{\varepsilon}}+L_{A_{1}^{\varepsilon}} R_{B_{2}^{\varepsilon}}+L_{A_{2}^{\varepsilon}} R_{B_{1}^{\varepsilon}}+L_{A_{2}^{\varepsilon}} R_{B_{2}^{\varepsilon}} .
$$

By the above part of the proof, it follows that each of the $L_{A_{i}^{\varepsilon}} R_{B_{j}^{\varepsilon}}$ is strictly singular, thus so is the sum $L_{A_{1}^{\varepsilon}+A_{2}^{\varepsilon}} R_{B_{1}^{\varepsilon}+B_{2}^{\varepsilon}}$. Finally, since

$$
L_{A_{1}^{\varepsilon}+A_{2}^{\varepsilon}} R_{B_{1}^{\varepsilon}+B_{2}^{\varepsilon}} \rightarrow L_{A} R_{B} \quad \text { as } \varepsilon \rightarrow 0
$$

we conclude $L_{A} R_{B}$ is also strictly singular.
We introduce the following class of operators.
Definition 5.6: Given $p<q$, we say that $T \in \mathcal{L}(X)$ is approximately $\left(\ell_{p}, \ell_{q}\right)$ factorizable if, for every $\varepsilon>0$, there exist operators $T_{1}^{\varepsilon}: X \rightarrow \ell_{p}, T_{2}^{\varepsilon}: \ell_{p} \rightarrow \ell_{q}$ and $T_{3}^{\varepsilon}: \ell_{q} \rightarrow X$ such that

$$
\left\|T-T_{3}^{\varepsilon} T_{2}^{\varepsilon} T_{1}^{\varepsilon}\right\| \leq \varepsilon
$$

Note that the class of approximately $\left(\ell_{p}, \ell_{q}\right)$-factorizable operators forms a closed operator ideal contained in that of strictly singular operators. Indeed, with the above notation, every operator $T_{2}^{\varepsilon}: \ell_{p} \rightarrow \ell_{q}$ is strictly singular; since the strictly singular operators are a closed operator ideal, it follows that every approximately $\left(\ell_{p}, \ell_{q}\right)$-factorizable operator is strictly singular.

Theorem 5.7: Suppose that $A, B \in \mathcal{L}(X)$ are approximately $\left(\ell_{p}, \ell_{q}\right)$-factorizable operators for some $p<q$. Then $L_{A} R_{B}: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ is strictly singular.

Proof. For every $\varepsilon>0$, let $A_{1}^{\varepsilon}, B_{1}^{\varepsilon}: X \rightarrow \ell_{p}, A_{2}^{\varepsilon}, B_{2}^{\varepsilon}: \ell_{p} \rightarrow \ell_{q}$ and $A_{3}^{\varepsilon}, B_{3}^{\varepsilon}: \ell_{q} \rightarrow X$ be such that

$$
\left\|A-A_{3}^{\varepsilon} A_{2}^{\varepsilon} A_{1}^{\varepsilon}\right\| \leq \varepsilon \quad \text { and } \quad\left\|B-B_{3}^{\varepsilon} B_{2}^{\varepsilon} B_{1}^{\varepsilon}\right\| \leq \varepsilon
$$

For convenience, set $A^{\varepsilon}=A_{3}^{\varepsilon} A_{2}^{\varepsilon} A_{1}^{\varepsilon}$ and $B^{\varepsilon}=B_{3}^{\varepsilon} B_{2}^{\varepsilon} B_{1}^{\varepsilon}$. The factorizations

yield the following factorization for the corresponding multiplication operators:

Here we use implicitly Pitt's theorem which asserts $\mathcal{L}\left(\ell_{q}, \ell_{p}\right)=\mathcal{K}\left(\ell_{q}, \ell_{p}\right)$ for $p<q$.
Theorem 5.5 yields that $L_{A_{2}^{\varepsilon}} R_{B_{2}^{\varepsilon}}$ and, hence $L_{A^{\varepsilon}} R_{B^{\varepsilon}}$, is strictly singular for every $\varepsilon>0$. Note that

$$
\begin{aligned}
\left\|L_{A} R_{B}-L_{A^{\varepsilon}} R_{B^{\varepsilon}}\right\| & \leq\left\|L_{A}-L_{A^{\varepsilon}}\right\|\left\|R_{B}\right\|+\left\|L_{A^{\varepsilon}}\right\|\left\|R_{B}-R_{B^{\varepsilon}}\right\| \\
& \leq\|B\| \varepsilon+(\|A\|+\varepsilon) \varepsilon
\end{aligned}
$$

The conclusion follows from the fact that the strictly singular operators form a closed ideal.

6. Factorization of strictly singular operators on L_{p}

In this section we focus on the case $X=L_{p}([0,1])$, for $1<p<\infty$ and $p \neq 2$, endowed with Lebesgue measure μ. For simplicity we will always write L_{p}. According to [15, Theorem 2.9], $A, B \in \mathcal{S}\left(L_{p}\right)$ if and only if $L_{A} R_{B}$ is strictly singular on $\mathcal{L}\left(L_{p}\right)$. However, the proof of this result is considerably long, and a more concise argument would be desirable. Our aim here is to show how factorization techniques can shed some light in this direction.

Recall that $T \in \mathcal{S}\left(L_{p}\right)$ is equivalent to $T^{*} \in \mathcal{S}\left(L_{p^{\prime}}\right), \frac{1}{p}+\frac{1}{p^{\prime}}=1$ [25]. Also recall that a subset $W \subseteq L_{p}$ is uniformly p-integrable when

$$
\lim _{\mu(A) \rightarrow 0} \sup _{f \in W}\left\|f \chi_{A}\right\|_{p}=0
$$

An argument like [26, III.C.12], see also [9, Lemma 1], yields:
Lemma 6.1: Let $W \subseteq L_{p}(p \neq 2)$ be a bounded convex symmetric set. The following are equivalent:
(a) W is uniformly p-integrable.
(b) W does not contain any sequence $\left(x_{n}\right)$ which is equivalent to the unit vector basis of ℓ_{p} and spans a complemented subspace.
(c) For every $\varepsilon>0$, there is $M_{\varepsilon}>0$ such that $W \subseteq M_{\varepsilon} B_{L_{\infty}}+\varepsilon B_{L_{p}}$.

Let us start with a factorization property of strictly singular operators on L_{p}.
Theorem 6.2: Let $p<2$ and $T \in \mathcal{S}\left(L_{p}\right)$. There are a Banach lattice $X_{T} \subseteq L_{p}$ such that the unit ball of X_{T} is uniformly p-integrable in L_{p}, and operators $R: L_{p} \rightarrow \ell_{p}, S: \ell_{p} \rightarrow X_{T}$ making the following diagram commutative:

where $j: X_{T} \hookrightarrow L_{p}$ denotes the formal inclusion.
We prepare the proof with the following lemmas.
Lemma 6.3: Let $1<p<2$ and $T: L_{p} \rightarrow L_{p}$ be ℓ_{p}-singular. Then $T\left(B_{L_{p}}\right)$ is a uniformly p-integrable set.

Proof. Set $W_{0}=T\left(B_{L_{p}}\right)$. By Lemma 6.1, it is enough to see that W_{0} does not contain any sequence which is equivalent to the ℓ_{p} basis. Suppose the contrary, and let $\left(x_{n}\right) \subseteq B_{L_{p}}$ be such that, for some constant $C>0$ and any sequences $\left(a_{n}\right)$ of scalars, we have

$$
\frac{1}{C}\left(\sum_{n}\left|a_{n}\right|^{p}\right)^{\frac{1}{p}} \leq\left\|\sum_{n} a_{n} T x_{n}\right\| \leq C\left(\sum_{n}\left|a_{n}\right|^{p}\right)^{\frac{1}{p}}
$$

Passing to a subsequence, there is no loss of generality in assuming that $\left(x_{n}\right)$ is weakly null, and hence unconditional. Using unconditionality and the fact
that L_{p} has type p it follows that for some constants $K, M>0$ we have

$$
\begin{aligned}
\frac{1}{C}\left(\sum_{n}\left|a_{n}\right|^{p}\right)^{\frac{1}{p}} & \leq\left\|\sum_{n} a_{n} T x_{n}\right\| \leq\|T\|\left\|\sum_{n} a_{n} x_{n}\right\| \\
& \leq K \int_{0}^{1}\left\|\sum_{n} a_{n} r_{n}(t) x_{n}\right\| d t \\
& \leq K M\left(\sum_{n}\left|a_{n}\right|^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

Therefore T is invertible on the span of $\left(x_{n}\right)$, which is equivalent to the unit vector basis of ℓ_{p}. This contradicts the assumption that T is ℓ_{p}-singular.

For $p<q$, let $i_{q, p}: L_{q} \hookrightarrow L_{p}$ denote the formal inclusion operator.
Lemma 6.4: Let $p>2$ and $T: L_{p} \rightarrow L_{p}$ be ℓ_{2}-singular. Then the operator $i_{p, 2} T: L_{p} \rightarrow L_{2}$ is compact.

Proof. Suppose $\left(x_{n}\right) \subseteq L_{p}$ is a bounded sequence which, without loss of generality, can be assumed to be weakly null and normalised, and that

$$
\liminf _{n}\left\|i_{p, 2} T x_{n}\right\|_{2}>0
$$

Hence, we can extract a subsequence such that $\left(i_{p, 2} T x_{n}\right)$ is equivalent to the unit basis of ℓ_{2}. Since $p>2$, by [10] it follows that $\left(x_{n}\right)$ is equivalent to the unit basis of either ℓ_{p} or ℓ_{2}. Suppose that $\left(x_{n}\right)$ is equivalent to the unit basis of ℓ_{2}, then for arbitrary scalars $\left(a_{n}\right)$ we have

$$
\left\|\sum_{n} a_{n} x_{n}\right\|_{p} \approx\left(\sum_{n}\left|a_{n}\right|^{2}\right)^{\frac{1}{2}} \approx\left\|\sum_{n} a_{n} i_{p, 2} T x_{n}\right\|_{2} \leq\left\|\sum_{n} a_{n} T x_{n}\right\|_{p}
$$

Thus, T is an isomorphism on the subspace generated by $\left(x_{n}\right)$ which is a contradiction with T being ℓ_{2}-singular. Therefore, $\left(x_{n}\right)$ must be equivalent to the unit vector basis of ℓ_{p}, but this would imply that for every $k \in \mathbb{N}$

$$
k^{\frac{1}{2}} \lesssim\left\|\sum_{n=1}^{k} i_{p, 2} T x_{n}\right\|_{2} \lesssim\left\|\sum_{n=1}^{k} x_{n}\right\|_{p} \lesssim k^{\frac{1}{p}}
$$

This is impossible for large k as $p>2$, so we conclude that $\liminf _{n}\left\|i_{p, 2} T x_{n}\right\|_{2}=0$ and $i_{p, 2} T$ is compact, as claimed.

The next result is based on a well-known interpolation construction from [4] (see also [2, Section 5.2]).

Lemma 6.5: Let $1<p<2$ and $T \in \mathcal{S}\left(L_{p}\right)$. There exist a Banach lattice X_{T} with the following properties:
(i) $j: X_{T} \hookrightarrow L_{p}$ is bounded.
(ii) $\widetilde{T}: L_{p} \rightarrow X_{T}$ given by $\widetilde{T} x=T x$ is bounded.
(iii) The unit ball of X_{T} is uniformly p-integrable in L_{p}.
(iv) \widetilde{T} is strictly singular.
(v) The composition $\widetilde{T} i_{2, p}: L_{2} \rightarrow X_{T}$ is compact.

Proof. Let W denote the solid convex hull of $T\left(B_{L_{p}}\right)$. Clearly, W is convex, solid and uniformly p-integrable in L_{p}, by Lemma 6.3. For each $n \in \mathbb{N}$, let $U_{n}=2^{n} W+2^{-n} B_{L_{p}}$, and denote

$$
\|x\|_{n}=\inf \left\{\lambda>0: x \in \lambda U_{n}\right\}
$$

Let us define

$$
X_{T}=\left\{x \in L_{p}:\|x\|_{X_{T}}=\left(\sum_{n \in \mathbb{N}}\|x\|_{n}^{2}\right)^{\frac{1}{2}}<\infty\right\}
$$

By [2, Theorem 5.41], it follows that X_{T} is a Banach lattice, that the operator $\widetilde{T}: L_{p} \rightarrow X_{T}$ given by $\widetilde{T}(x)=T(x)$ is bounded, and the inclusion $j: X_{T} \rightarrow L_{p}$ is also bounded (see also [2, Theorem 5.37]). Thus, we have (i) and (ii).

For the proof of (iii), let $\varepsilon>0$ and let $n \in \mathbb{N}$ such that $2^{-n+1}<\varepsilon \leq 2^{-n+2}$. Since W is uniformly p-integrable, by Lemma 6.1 there is $M_{\varepsilon / 2}>0$ such that

$$
W \subseteq M_{\varepsilon / 2} B_{L_{\infty}}+\frac{\varepsilon}{2} B_{L_{p}}
$$

Now let $x \in X_{T}$ such that $\|x\|_{X_{T}} \leq 1$. In particular, we have that $\|x\|_{n} \leq 1$, or in other words,

$$
\begin{aligned}
x \in 2^{n} W+2^{-n} B_{L_{p}} & \subseteq 2^{n} M_{\varepsilon / 2} B_{L_{\infty}}+2^{-n} B_{L_{p}}+\frac{\varepsilon}{2} B_{L_{p}} \\
& \subseteq \frac{4 M_{\varepsilon / 2}}{\varepsilon} B_{L_{\infty}}+\varepsilon B_{L_{p}}
\end{aligned}
$$

Hence, $B_{X_{T}} \subseteq \frac{4 M_{\varepsilon / 2}}{\varepsilon} B_{L_{\infty}}+\varepsilon B_{L_{p}}$, and since this holds for every $\varepsilon>0$, it follows by Lemma 6.1 that $B_{X_{T}}$ is uniformly p-integrable in L_{p}.

Recall an operator $S: E \rightarrow F$ is strictly singular if and only if for every infinite-dimensional subspace $X \subseteq E$, there is a further infinite-dimensional subspace $Y \subseteq X$ such that the restriction $\left.S\right|_{Y}$ is compact. Thus, (iv) follows from [2, Theorem 5.40].

Finally, for the proof of (v), note first that $T i_{2, p}: L_{2} \rightarrow L_{p}$ is compact. Indeed, since $T \in \mathcal{S}\left(L_{p}\right)$, we have that $T^{*} \in \mathcal{S}\left(L_{p^{\prime}}\right)$ and by Lemma 6.4, it follows that $i_{p^{\prime}, 2} T^{*}: L_{p^{\prime}} \rightarrow L_{2}$ is compact. By duality, we have that $T i_{2, p}: L_{2} \rightarrow L_{p}$ is compact and the conclusion follows from [2, Theorem 5.40].

Proof of Theorem 6.2. By Lemma 6.5 we have the factorization

where j maps the unit ball into a uniformly p-integrable set.
Moreover, the composition $\widetilde{T} i_{2, p}: L_{2} \rightarrow X_{T}$ is compact. From this fact and duality, using [8] it follows that \widetilde{T} actually factors through ℓ_{p} :

Joining the two diagrams we get the result.
Remark 6.6: For the sake of completeness, let us briefly recall the factorization construction given in [8] for an operator $A: L_{p} \rightarrow L_{p}$ with $p>2$: Let $\left(h_{n}\right)_{n \in \mathbb{N}}$ denote the Haar basis for L_{p}. For increasing sequences $\left(k_{n}\right)_{n \in \mathbb{N}},\left(M_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{N}, take $H_{n}=\left[h_{i}\right]_{i=k_{n}}^{k_{n+1}-1}$ and $|f|_{n}=\max \left\{M_{n}\|f\|_{L_{2}},\|f\|_{L_{p}}\right\}$. It can be checked that

$$
Y=\left(\bigoplus_{n \in \mathbb{N}}\left(H_{n},|\cdot|_{n}\right)\right)_{\ell_{p}}
$$

is isomorphic to ℓ_{p}. Moreover, for $x \in L_{p}$, set

$$
A_{1}(x)=\left(y_{n}\right)_{n \in \mathbb{N}} \in Y
$$

where $y_{n} \in H_{n}$ are such that $A(x)=\sum_{n \in \mathbb{N}} y_{n}$, and for $\left(x_{n}\right)_{n \in \mathbb{N}} \in Y$ set

$$
A_{2}\left(\left(x_{n}\right)_{n \in \mathbb{N}}\right)=\sum_{n \in \mathbb{N}} x_{n}
$$

The proof given in [8] yields that if $i_{p, 2} A$ is compact, then there exist increasing sequences $\left(k_{n}\right)_{n \in \mathbb{N}},\left(M_{n}\right)_{n \in \mathbb{N}}$ such that the corresponding A_{1} and A_{2} are bounded, and clearly $A=A_{2} A_{1}$.

Remark 6.7: The Banach lattice X_{T} constructed in the lemma (and thus in Theorem 6.2) can actually be taken to be a rearrangement invariant space. This can be done by taking W closed under measure rearrangements of the underlying space $[0,1]$. We refer the reader to [14] for background on rearrangement invariant spaces. Similarly, for $q>p$ one can also achieve that $L_{q} \subseteq X_{T}$ by enlarging W in the above proof.

Recall that an operator $T: E \rightarrow Y$ on a Banach lattice E is called M-weakly compact if $\left\|T x_{n}\right\| \rightarrow 0$ for every sequence of pairwise disjoint normalised vectors $\left(x_{n}\right) \subseteq E$. By duality, the following is an immediate consequence of Theorem 6.2.

Corollary 6.8: Let $p>2$ and $T \in \mathcal{S}\left(L_{p}\right)$. There are a rearrangement invariant space X_{T} and operators $T_{1}: L_{p} \rightarrow X_{T}, T_{2}: X_{T} \rightarrow \ell_{p}$ and $T_{3}: \ell_{p} \rightarrow L_{p}$ making the following diagram commutative:

with $T_{1} M$-weakly compact.
Proof. If $T \in \mathcal{S}\left(L_{p}\right)$, then $T^{*} \in \mathcal{S}\left(L_{p^{\prime}}\right)$ [25]. Now since $p^{\prime}<2$, Theorem 6.2 gives us the factorization $T^{*}=j S R$. Let $T_{1}=j^{*}, T_{2}=S^{*}$ and $T_{3}=R^{*}$. By $[2$, Theorem 5.64], and the fact that $j\left(B_{L_{p^{\prime}}}\right)$ is uniformly p-integrable, it follows that $T_{1}=j^{*}$ is M-weakly compact.

Theorem 6.9: Let $A, B \in \mathcal{S}\left(L_{p}\right)$. Then $L_{A} R_{B}$ factors through $\mathcal{K}\left(\ell_{p}\right)$.
Proof. By passing to adjoints we can assume without loss of generality that $p>2$. First, let us show that A and B have factorization diagrams through the same spaces. To this end, let X_{1} be the subspace of L_{p} consisting of functions supported on $[0,1 / 2]$ and X_{2} those supported on $[1 / 2,1]$. Clearly, we have the (band) decomposition $L_{p}=X_{1} \oplus X_{2}$ and lattice isomorphisms $\varphi_{i}: X_{i} \rightarrow L_{p}$ for $i=1,2$. Let $j_{i}: X_{i} \rightarrow L_{p}$ denote the inclusion operators, and $P_{i}: L_{p} \rightarrow X_{i}$ the corresponding (band) projections for $i=1,2$. Let us consider the operator

$$
T=j_{1} \varphi_{1}^{-1} A \varphi_{1} P_{1}+j_{2} \varphi_{2}^{-1} B \varphi_{2} P_{2}
$$

Clearly, $T \in \mathcal{S}\left(L_{p}\right)$, so Corollary 6.8 yields the factorization

with T_{1} M-weakly compact. It follows that we can factor A and B as follows:

where A_{1} and B_{1} are M-weakly compact.
Therefore, we can write $L_{A} R_{B}=\left(L_{A_{3}} R_{B_{1}}\right) \circ\left(L_{A_{2}} R_{B_{2}}\right) \circ\left(L_{A_{1}} R_{B_{3}}\right)$. We claim that

$$
L_{A_{1}} R_{B_{3}}\left(\mathcal{L}\left(L_{p}\right)\right) \subseteq \mathcal{K}\left(\ell_{p}, X_{T}\right)
$$

Indeed, assuming the contrary, let $T \in \mathcal{L}\left(L_{p}\right)$ and take a norm bounded sequence $\left(x_{n}\right) \subseteq \ell_{p}$ such that $\left(A_{1} T B_{3} x_{n}\right)$ has no convergent subsequence. Passing to a further subsequence we can assume that $\left(x_{n}\right)$ is weakly null and equivalent to the unit vector basis of ℓ_{p}. By [10], it follows that up to a further subsequence $\left(T B_{3} x_{n}\right) \subseteq L_{p}$ is equivalent to the unit vector basis of either ℓ_{2} or ℓ_{p}. In the former case, as $p>2$, it would follow that $\left\|T B_{3} x_{n}\right\| \rightarrow 0$ by Pitt's theorem. In the latter, we actually have that $\left\|T B_{3} x_{n}-y_{n}\right\| \rightarrow 0$ for a certain pairwise disjoint sequence $\left(y_{n}\right) \subseteq L_{p}$. Now, since A_{1} is M-weakly compact, it follows that $\left\|A_{1} T B_{3} x_{n}\right\| \rightarrow 0$. This is a contradiction, hence $L_{A_{1}} R_{B_{3}}\left(\mathcal{L}\left(L_{p}\right)\right) \subseteq \mathcal{K}\left(\ell_{p}, X_{T}\right)$, as claimed.

In particular, we have the following factorization:

Remark 6.10: Let us briefly recall part of the strategy of proof of [15, Theorem 2.9]: after some preliminary block-diagonalization argument, the authors show that if $A, B \in \mathcal{S}\left(L_{p}\right)(p>2)$ and $L_{A} R_{B}$ were not strictly singular, then it must be invertible on a subspace isomorphic to ℓ_{s}, with $s=\frac{2 p}{p-2}$ (see Claim 1 in the proof of [15, Theorem 2.9]); from there, some more work is necessary to reach a contradiction with the strict singularity of B. Alternatively, Theorem 6.9 together with Lemma 5.2 , yield that if $A, B \in \mathcal{S}\left(L_{p}\right)$, and $L_{A} R_{B}$ is invertible in some subspace $X \subseteq \mathcal{L}\left(L_{p}\right)$, then X should contain a subspace isomorphic to $\ell_{p}, \ell_{p^{\prime}}$ or c_{0} (although this last option is impossible because of the weak compactness of $\left.L_{A} R_{B}\right)$. Hence, the case $X=\ell_{s}$ as above can also be ruled out by this approach.

Remark 6.11: We do not know whether every $T \in \mathcal{S}\left(L_{p}\right)$ is approximately $\left(\ell_{r}, \ell_{s}\right)$-factorizable for some $r<s$. In fact, we do not know whether for an operator $T \in \mathcal{S}\left(L_{p}\right)$, and every $\varepsilon>0$, there exist $r(\varepsilon)<s(\varepsilon)$, two sequences of finite dimensional spaces $\left(X_{n}\right)_{n \in \mathbb{N}},\left(Y_{n}\right)_{n \in \mathbb{N}}$ and operators

$$
\begin{aligned}
& T_{1}^{\varepsilon}: L_{p} \longrightarrow\left(\bigoplus X_{n}\right)_{\ell_{r(\varepsilon)}} \\
& T_{2}^{\varepsilon}:\left(\bigoplus X_{n}\right)_{\ell_{r(\varepsilon)}} \longrightarrow\left(\bigoplus Y_{n}\right)_{\ell_{s(\varepsilon)}} \\
& T_{3}^{\varepsilon}:\left(\bigoplus Y_{n}\right)_{\ell_{s(\varepsilon)}} \longrightarrow L_{p}
\end{aligned}
$$

such that

$$
\left\|T-T_{3}^{\varepsilon} T_{2}^{\varepsilon} T_{1}^{\varepsilon}\right\| \leq \varepsilon
$$

Keeping in mind the previous comment, by Remark 5.3 and the argument in the proof of Theorem 6.9 , such a factorization would yield an alternative direct proof of [15, Theorem 2.9].

In connection with approximate factorization the following property of strictly singular operators might be useful (compare with [6, Proposition 4.1]). For a measurable set $A \subseteq[0,1]$, let P_{A} denote the projection onto the band of functions supported on $A: P_{A} x=\chi_{A} x$.

Proposition 6.12: Let $T \in \mathcal{L}\left(L_{p}\right)$ be ℓ_{p}-singular. When $p<2$, for every $\varepsilon>0$, there is $\delta>0$ such that if $\mu(A)<\delta$, then

$$
\left\|P_{A} T\right\| \leq \varepsilon
$$

Similarly, when $p \geq 2$, for every $\varepsilon>0$, there is $\delta>0$ such that if $\mu(A)<\delta$, then $\left\|T P_{A}\right\| \leq \varepsilon$.

Proof. By duality it is enough to prove the first statement. By Lemma 6.3, $T\left(B_{L_{p}}\right)$ is a uniformly p-integrable set. Thus, for every $\varepsilon>0$ there is $M_{\varepsilon}>0$ such that $T\left(B_{L_{p}}\right) \subseteq M_{\varepsilon} B_{L_{\infty}}+\frac{\varepsilon}{2} B_{L_{p}}$. Let $\delta=\left(\varepsilon / 2 M_{\varepsilon}\right)^{p}$. It follows that for any set with $\mu(A)<\delta$

$$
\left\|P_{A} T\right\|=\sup _{x \in B_{L_{p}}}\left\|P_{A} T x\right\|_{p} \leq \sup _{x \in B_{L_{p}}}\left\|P_{A} M_{\varepsilon}\right\|_{p}+\frac{\varepsilon}{2} \leq \varepsilon
$$

References

[1] F. Albiac and N. J. Kalton, Topics in Banach Space Theory, Graduate Texts in Mathematics, Vol. 233, Springer, New York, 2006.
[2] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.
[3] R. E. Curto and M. Mathieu (eds.), Elementary Operators and their Applications, Operator Theory: Advances and Applications, Vol. 212, Birkhäuser, Basel, 2011.
[4] W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński, Factoring weakly compact operators, Journal of Functional Analysis 17 (1974), 311-327.
[5] J. Flores, F. L. Hernández, E. M. Semenov and P. Tradacete, Strictly singular and power-compact operators on Banach lattices, Israel Journal of Mathematics 188 (2012), 323-352.
[6] F. L. Hernández, E. M. Semenov and P. Tradacete, Strictly singular operators on L_{p} spaces and interpolation, Proceedings of the American Mathematical Society 138 (2010), 675-686.
[7] J. R. Holub, On subspaces of separable norm ideals, Bulletin of the American Mathematical Society 79 (1973), 446-448.
[8] W. B. Johnson, Operators into L_{p} which factor through ℓ_{p}, Journal of the London Mathematical Society 14 (1976), 333-339.
[9] W. B. Johnson and G. Schechtman, Multiplication operators on $L\left(L_{p}\right)$ and ℓ_{p}-strictly singular operators, Journal of the European Mathematical Society 10 (2008), 1105-1119.
[10] M. I. Kadec and A. Pelczynski, Bases, lacunary sequences and complemented subspaces in the spaces L_{p}, Studia Mathematica 21 (1961/62), 161-176.
[11] N. J. Kalton, Spaces of compact operators, Mathematische Annalen 208 (1974), 267-278.
[12] T. Kato, Perturbation theory for nullity deficiency and order quantities of linear operators, Journal d'Analyse Mathématique 6 (1958), 273-322.
[13] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I. Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92, Springer, Heidelberg, 1977.
[14] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II. Function Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 97, Springer, Heidelberg, 1979.
[15] M. Lindström, E. Saksman and H. O. Tylli, Strictly singular and cosingular multiplications, Canadian Journal of Mathematics 57 (2005), 1249-1278.
[16] M. Lindström and G. Schlüchtermann, Composition of operator ideals, Mathematica Scandinavica 84 (1999), 284-296.
[17] M. Mathieu (ed.), Elementary Operators and Applications, World Scientific, Singapore, 1992.
[18] V. D. Milman, Operators of class C_{0} and C_{0}^{*}, Teorija Funkciŭ, Funkcional'nyı̆ Analiz i ih Priloženija 10 (1970), 15-26.
[19] T. Oikhberg and E. Spinu, Ideals of operators on C^{*}-algebras and their preduals, Bulletin of the London Mathematical Society 47 (2015), 156-170.
[20] A. Pełczyński, On strictly singular and strictly cosingular operators. I. Strictly singular and strictly cosingular operators in $C(S)$-spaces, Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 13 (1965) 3136.
[21] E. Saksman and H.-O. Tylli, Weak compactness of multiplication operators on spaces of bounded linear operators, Mathematica Scandinavica 70 (1992), 91-111.
[22] E. Saksman and H.-O. Tylli, Multiplications and elementary operators in the Banach space setting, in Methods in Banach Space Theory, London Mathematical Society Lecture Note Series, Vol. 337, Cambridge University Press, Cambridge, 2006, pp. 253-292.
[23] B. Sari, T. Schlumprecht, N. Tomczak-Jaegermann and V. G. Troitsky, On norm closed ideals in $L\left(\ell_{p}, \ell_{q}\right)$, Studia Mathemaatica 179 (2007), 239-262.
[24] K. Vala, On compact sets of compact operators, Annales Academiæ Scientiarum Fennicæ Mathematica 351 (1964).
[25] L. Weis, On perturbations of Fredholm operators in $L_{p}(\mu)$-spaces, Proceedings of the American Mathematical Society 67 (1977), 287-292.
[26] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics, Vol. 25, Cambridge University Press, Cambridge, 1991.

[^0]: * The second-named author acknowledges financial support from the Spanish Ministry of Economy and Competitiveness through grants MTM2016-75196-P, MTM2016-76808-P, and the "Severo Ochoa Programme for Centres of Excellence in R\&D" (SEV-2015-0554). Support of an LMS Research in Pairs grant is also gratefully acknowledged. We thank Prof. W. B. Johnson for helpful discussions concerning this paper. We are grateful to the referee for carefully reading the paper and pointing out an oversight in a first version of the proof of Theorem 5.5. Received October 22, 2018 and in revised form May 13, 2019

