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Injectivity
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Abstract. The concept of dimension is ubiquitous in Mathematics. In this survey
we discuss the interrelations between dimension and injectivity in the categorical
sense.

1. Introduction

An invariant for an object enables us to distinguish it from a like one up to a suitable
notion of isomorphism; ‘dimension’ is one of the most common invariants. Maybe
the best known dimension is the cardinality of a basis of a vector space; which is
even a complete invariant in the sense that two vector spaces (over the same field) are
isomorphic if and only if they have the same dimension. In the argument that the
cardinality of any two bases of a given vector space agree with each other (so that its
‘dimension’ is well defined) the fact that every basis of a subspace can be extended to
a basis of a larger space plays an important role. This is tantamount to the statement
that a linear mapping from a subspace of a vector space can always be extended to a
linear mapping on the larger space; diagrammatically

E
µ

//

f

��

F

f̃
��

G

(1.1)

where µ is the ‘embedding’ (an injective linear mapping) of E into F , f is the given

linear mapping into a vector space G and f̃ denotes the extension of f to F . In the
context of modules over a (commutative, unital) ring R this is quickly seen to fail in
general: given the canonical embedding µ : 2Z → Z, the Z-linear map f : 2n 7→ n from

2Z into Z cannot be extended to the larger module Z as, otherwise, the extension f̃

would have to satisfy 1 = f(2) = f̃(2) = 2f̃(1) which is impossible as f̃(1) ∈ Z. The
expert already notices at this stage the reason for this is that the Z-module Z is not
‘injective’; equivalently, the ring Z is not ‘semisimple’.

The property of an object I in a category to ensure the ‘extension’ of a morphism
from a ‘subobject’ E of an object F to F is generally called ‘injectivity’; and is used in
module categories to define a cohomological dimension which is not tied to the existence
of a basis. In this survey article, we will review the interaction between injectivity
and dimension in a wider setting of not necessarily abelian categories with a view on
categories arising in functional analysis.
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The fundamental ingredients in a category are the morphisms, the ‘arrows’ between
objects. They determine the concept of ‘isomorphism’ in the category, and similarly
important is the choice of ‘embeddings’ some of which we have observed above. Typical
categories we are interested in are the following ones.

Category Objects Morphisms/Arrows

VecC complex vector spaces linear maps

ModR modules over a ring R R-module maps

Nor∞ (complex) normed spaces bounded linear maps

Nor1 normed spaces contractive linear maps

Ban∞ Banach spaces bounded linear maps

Ban1 Banach spaces contractive linear maps

Top topological spaces continuous maps

Note, however, that not all objects in a category have to be sets with some additional
structure and even if they are, the morphisms need not be mappings. For instance, we
could consider homotopy classes of continuous mappings between topological spaces as
the morphisms. In functor categories, such as categories of sheaves, e.g., the morphisms
are typically given by natural transformations.

In a category A we will denote by obj(A) the class of objects of A and, for any two
E,F ∈ obj(A), by Mor(E,F ) the set of all morphisms between E and F . In case we
need to specify the category explicitly, we write MorA(E,F ). Let us recall some basic
terminology; for a comprehensive discussion see, e.g., [1].

A morphism f ∈ Mor(E,F ) is called a monomorphism if for any two morphisms
g, h ∈ Mor(F,G) the identity fg = fh implies that g = h, and it is called an epimor-
phism if for any two morphisms g, h ∈ Mor(G,E) the identity gf = hf implies that
g = h. In a concrete category, that is, the objects have an underlying set structure
and the morphisms are set mappings (with some additional properties), every injective
morphism is a monomorphism and every surjective morphism is an epimorphism how-
ever the reverse implications fail in general. The morphism f ∈ Mor(E,F ) is called an
isomorphism if there is a morphism f̄ ∈ Mor(F,E) such that f̄f = idE and ff̄ = idF ,
where id stands for the identity morphism of an object. An isomorphism is always a
monomorphism and an epimorphism but the converse often fails; for example, in Nor∞.

The concept of a ‘subobject’ can be replaced by specifying a class M of monomor-
phisms which one usually assumes to be closed under composition and contains all
isomorphisms in the category. For E,F ∈ obj(A) we will write

M(E,F ) = {µ ∈ MorA(E,F ) | µ ∈ M}

for the set of all morphisms between E and F that belong to the class M. With these
preparations we now introduce the main idea.

2. Injective Objects

An object I ∈ obj(A) is called M-injective (for a specified class M of monomorphisms
in the category A) if, whenever E,F ∈ obj(A) and µ ∈ M(E,F ) are given, every

f ∈ Mor(E, I) can be ‘extended’ to a morphism f̃ ∈ Mor(F, I), that is, f = f̃µ
as shown in the diagram (1.1) above (with I = G). Equivalently, if the mapping
µ∗ : Mor(F, I) → Mor(E, I), g 7→ gµ is surjective. (We shall take up this point of view
in more detail in Section 3 below.)
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Example 2.1. In the category Nor1 we choose as M all linear isometries. An M-
injective object I therefore has the property that, whenever E is (linearly isometric
to) a subspace of a normed space F , every linear contraction from E into I can be
extended to a contraction from F to I. Let f : E → I be a bounded linear mapping

with ‖f‖ 6= 0. The contraction f1 = f
‖f‖ is extended to a contraction f̃1 : F → I.

With µ : E → F the embedding we have f̃1µ = f1, equivalently, ‖f‖f̃1µ = f . Hence∥∥‖f‖f̃1
∥∥ = ‖f‖ ‖f̃1‖ ≤ ‖f‖, in other words, f̃ := ‖f‖f̃1 is a ‘Hahn–Banach extension’

of f : it has the same norm as f . The Hahn–Banach theorem now states that C is an
M-injective object in Nor1.

Taking the same class M in the full subcategory Ban1, the M-injectives in Ban1

are the completions of the M-injectives in Nor1.

Sometimes it is possible to characterise all injective objects in a category. For exam-
ple, in Ban1, an object E is M-injective (where M is the class of all linear isometries)
if and only if E is isomorphic in Ban1 to a space C(X) of continuous complex-valued
functions on an extremally disconnected compact Hausdorff space X [11, Chapter 3,
Section 11, Theorem 6].

We say that the category A has enough M-injectives if, for every E ∈ obj(A), there
are an M-injective object I and a morphism µ ∈ M(E, I); in other words, every object
can be embedded into an M-injective object.

Example 2.2. The category Ban1 has enough M-injectives. The reason for this is
two-fold. Firstly, every Banach space can be isometrically embedded into a space of the
form

ℓ∞(Ω) = {ϕ : Ω → C | ϕ is bounded}.

This is a consequence of the Hahn–Banach theorem. Let E ∈ obj(Ban1) and let E′
1

denote its dual unit ball, that is, the set of all bounded linear functionals on E with
norm at most one. Then x 7→ x̂, E → ℓ∞(E′

1), where x̂(f) = f(x) for all f ∈ E′
1 is a

linear isometry. So we may take Ω = E′
1 and µ ∈ M(E, ℓ∞(Ω)) this isometry.

Secondly, Ban1 has arbitrary products, namely, for any family {Eω | ω ∈ Ω} of
Banach spaces, the space

∏

ω∈Ω

Eω =
{
ϕ ∈ X

ω∈Ω
Eω

∣∣ sup
ω∈Ω

‖ϕ(ω)‖ <∞
}
,

where Xω∈ΩEω denotes the cartesian product of the family {Eω | ω ∈ Ω}. Setting
Eω = C for each ω, we clearly have

∏
ω∈ΩEω = ℓ∞(Ω). Each Eω is M-injective

(Example 2.1) and it is a general fact that products of injectives are injective in a
category with products; thus ℓ∞(Ω) is M-injective.

Since every normed space can be isometrically embedded into a Banach space (its
completion), Nor1 has enough M-injectives as well.

The following terminology is useful in understanding the relations between injective
and non-injective objects.

Definition 2.3. (i) Let E,F ∈ obj(A). We say E is a retract of F if there exist
morphisms s ∈ Mor(E,F ) and r ∈ Mor(F,E) such that rs = idE . In this case we call
s a section and r a retraction.

(ii) An object E ∈ obj(A) is an absolute M-retract if every µ ∈ M(E,F ) for any
F ∈ obj(A) is a section.

Proposition 2.4. Every M-injective object is an absolute M-retract. Every retract of
an M-injective object is M-injective. If A has enough M-injectives then every absolute
M-retract is M-injective.
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Proof. Let I ∈ obj(A) be M-injective and let µ ∈ M(I, F ) for some F ∈ obj(A). Then,
for idI , there is r ∈ Mor(F, I) such that idI = rµ, so µ is a section. If E ∈ obj(A) and
s ∈ Mor(E, I), r ∈ Mor(I, E) satisfy rs = idE then, for every f ∈ Mor(G,E), G any

object in A, and µ ∈ M(G,H), H ∈ obj(A), there is f̃ ∈ Mor(H, I) with sf = f̃µ and

hence, f = idEf = rsf = rf̃µ so that E is M-injective as a retract of I.
Suppose A has enough M-injectives. Then every absolute M-retract is a retract of

an M-injective and hence is M-injective. �

The above result is effective in deciding which objects can be injective.

Example 2.5. Let F be a Banach space. Suppose E is a retract of F and s : E → F
and r : F → E are the section and retraction, respectively. Then (sr)2 = srsr = sr is
a projection of norm one from F onto E. In other words, E is a (topological) direct
summand of F . As Ban1 has enough M-injectives (Example 2.2), a Banach space
E is injective if and only if, whenever E is (isometrically isomorphic to) a subspace
of an injective Banach space F , there is a norm-one projection from F onto E, by
Proposition 2.4 above.

Let c0(Ω) be the closed subspace of ℓ∞(Ω) consisting of those bounded functions ϕ
such that, for every ε > 0, the set {ω ∈ Ω | |ϕ(ω)| ≥ ε} is finite. By a well-known result
of Phillips, see, e.g., [9, Theorem 5.6], there is no bounded projection from ℓ∞(Ω) onto
c0(Ω); as a result, c0(Ω) is not M-injective.

3. Additive Categories

So far the categories we considered had very few additional properties; in order to be
able to define a dimension efficiently we need some more structure.

Definition 3.1. A category A is called additive if it has a zero object (a unique object
0 such that, for every E ∈ obj(A), both MorA(E, 0) and MorA(0, E) are singleton
sets each); for all E,F ∈ obj(A) the morphism set MorA(E,F ) has the structure
of an (additive) abelian group (in which case it is usually denoted by HomA(E,F ))
such that composition of morphisms is bilinear; and for every pair of objects E,F ∈
obj(A) their biproduct exists (that is, there existsD ∈ obj(A) together with morphisms
µE ∈ MorA(E,D), πE ∈ MorA(D,E), µF ∈ MorA(F,D), πF ∈ MorA(D,F ) such that
πEµE = idE , πFµF = idF and µEπE + µFπF = idD. In this case, the unique biproduct
is usually denoted by D = E ⊕ F and called the direct sum of E and F .

More details on additive categories can be found, for example, in [12].

Example 3.2. Probably the most commonly known additive categories are module
categories. Let R be a unital ring. Let ModR denote the category whose objects are
the right R-modules and the morphisms are the R-module maps (also called R-linear
maps). Usually, MorModR

(E,F ) is denoted by HomR(E,F ), for E,F ∈ obj(ModR),
and it is evidently an abelian group. The zero object is the zero module. The direct
sum of E and F consists of all pairs (x, y) with x ∈ E and y ∈ F with coordinatewise
operations, the R-module maps µ and π are the inclusions and the projections into and
onto the respective coordinate. Hence, the direct sum E⊕F is isomorphic to the direct
product E×F (as is the case in any additive category, where the terminology coproduct
is used instead of direct sum).

The canonical choice for the class M is the one consisting of all monomorphisms
in ModR; these agree with the one-to-one R-module maps. The category ModR has
enough M-injectives [10, Proposition I.8.3].
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Example 3.3. Since the sum of two contractions is not a contraction, the category
Ban1 is not additive. However, the larger category Ban∞ is: the sum of two bounded
linear operators is bounded, the zero object is the zero Banach space, and the direct
sum of two Banach spaces exists. In this case, for E,F ∈ obj(Ban∞), MorBan∞(E,F )
is typically written as L(E,F ) and is another object in Ban∞ (a difference to ModR).
The monomorphisms in Ban∞ are the one-to-one bounded operators and the epimor-
phisms those with dense range. Thus, for f ∈ L(E,F ) to be an isomorphism in Ban∞

it is not sufficient to be both a monomorphism and an epimorphism.
For the class M one could take the same as in Ban1; but then not all isomorphisms

(bijective bounded operators) would be in M. So the canonical choice is the one-to-
one bounded operators with closed range. By Example 2.2, Ban∞ has enough M-
injectives. Let us point out a subtle difference in the notions of injectivity in Ban1 and
in Ban∞. A Banach space I which is injective in Ban1 is also injective in Ban∞: see
the normalisation argument in Example 2.1. But if I is injective in Ban∞ it need not
be injective in Ban1 as the extension may not preserve the norm.

There is a neat way to describe injectivity in a category by ‘comparison’ with the
category Ab of abelian groups with group homomorphisms; this is done via the concept
of an ‘exact functor’. To introduce this notion, we firstly look at module categories. A
sequence in ModR,

0 // E
µ

// F
π // G // 0 (3.1)

is called short exact if µ is a monomorphism (one-to-one), π is an epimorphism (onto)
and the image of µ agrees with the kernel of π. We introduce the contravariant Hom-
functor as follows. Let I ∈ obj(ModR) be arbitrary and define

HomR(−, I) : ModR −→ Ab

E 7−→ HomR(E, I)

HomR(E,G) ∋ f 7−→ f∗ = HomR(f, I)

(3.2)

given by f∗(g) = gf for g ∈ HomR(G, I). Then f∗ : HomR(G, I) → HomR(E, I) is a
group homomorphism, and ‘contravariant’ means that (f1f2)

∗ = f∗2 f
∗
1 for composable

morphisms f1 and f2.
It is easy to check that this functor turns the sequence (3.1) above into the sequence

0 // HomR(G, I)
π∗

// HomR(F, I)
µ∗

// HomR(E, I) (3.3)

where π∗ is one-to-one and the image of π∗ equals the kernel of µ∗ but µ∗ need not
be surjective. One says the functor HomR(−, I) is left exact. In the case that µ∗ is
surjective—so that (3.3) turns into an exact sequence in Ab—one calls the functor
exact.

With M still the class of all monomorphisms in ModR we find that I ∈ obj(ModR)
is M-injective if and only if the functor HomR(−, I) is exact. The idea behind using a
functor is that properties in the image category, such as Ab for example, may be easier
to understand.

Before moving on to more general categories, we wish to make the following point.
A morphism µ ∈ HomR(E,F ) is always ‘the first half’ of a short exact sequence as
in (3.1): we only have to take for G the quotient F/imµ, where imµ is the image of µ,
and π the canonical quotient mapping. This point of view will be stressed very soon
below.

Let A be an additive category and let f ∈ MorA(E,F ) for some E,F ∈ obj(A).

Definition 3.4. A morphism i : K → E is a kernel of f if fi = 0 and for each
D ∈ obj(A) and g ∈ MorA(D,E) with fg = 0 there is a unique h ∈ MorA(D,K)
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making the diagram below commutative

D

g

��

0

��

h

~~
K

0

66
i // E

f
// F

(3.4)

Any kernel is a monomorphism and is, up to isomorphism, unique. Thus we shall write
i = ker f .

Definition 3.5. A morphism p : F → C is a cokernel of f if pf = 0 and for each
D ∈ obj(A) and g ∈ MorA(F,D) with gf = 0 there is a unique h ∈ MorA(C,D)
making the diagram below commutative

E

0

((

0
&&

f
// F

p
//

g

��

C

h
��

D

(3.5)

Any cokernel is an epimorphism and is, up to isomorphism, unique. Thus we shall write
p = coker f .

Example 3.6. Let E,F be Banach spaces and let f ∈ L(E,F ) be a bounded linear
operator. A kernel of f is the isometric embedding of ker f = {x ∈ E | f(x) = 0}
into E. A cokernel of f is the open quotient mapping F 7→ F/im f , where im f stands
for the closure of the subspace im f = {f(x) | x ∈ E}.

Since the composition of a kernel with an isomorphism is a kernel, a monomorphism
in Ban∞ is a kernel if and only if it has closed image (by the Open Mapping Theorem).
Likewise, an epimorphism is a cokernel if and only if it is surjective.

Let

ℓ1 =
{
(ξn)n∈N

∣∣
∞∑

n=1

|ξn| <∞
}

be the space of all absolutely summable complex sequences with its canonical norm
and let c0 = c0(N). Then the embedding ℓ1 →֒ c0 is both a monomorphism and an
epimorphism but neither a kernel, nor a cokernel, nor an isomorphism.

Good sources of information on categories of Banach spaces are, e.g., [6, Chapter IV]
and [7].

It turns out that the correct generalisation of short exact sequences in general additive
categories is the concept of ‘kernel–cokernel pairs’.

Definition 3.7. In an additive category A, a kernel–cokernel pair (µ, π) consists of
two composable morphisms in A such that µ = kerπ and π = cokerµ, depicted as

E1
// µ // E2

π // // E3 (3.6)

where Ei ∈ obj(A). A monomorphism arising in such a pair is called admissible and is
denoted as

E // //F

and an epimorphism arising in such a pair is called admissible and is denoted as

E // //F
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Evidently this is a generalisation of (3.1) in ModR. The categories that resemble
module categories most are the abelian categories which are now discussed in the next
section.

4. Abelian vs. Exact Categories

One of the main technical devices in Homological Algebra are the ‘diagram lemmas’
which allow for (often skillful) manipulations with morphisms. In order for these to be
possible one often requires the additive category A to satisfy two further conditions

(i) every morphism in A has both a kernel and a cokernel;
(ii) every monomorphism is a kernel and every epimorphism is a cokernel.

In this case, A is an abelian category. These seemingly innocent looking additional
requirements have far-reaching consequences. For example, it follows that every mor-
phism which is both a monomorphism and an epimorphism is already an isomorphism.
In addition, every morphism f can be uniquely factorised as

E
f

//

π
  

F

G

µ

>> (4.1)

where π is an epimorphism and µ is a monomorphism. Clearly, ModR is an abelian
category and, in fact, every abelian category can, in some sense, be ‘embedded’ into
a module category (the Freyd–Mitchell embedding theorem [14, Section VI.7]). The
short exact sequences can then equivalently be expressed by (3.6).

Alas, the categories in functional analysis such as Ban∞ are typically not abelian,
see Example 3.6. Among the many generalisations of abelian categories the one that
seems to work best for us is the concept of an exact category in the sense of Quillen;
see [5] and [6].

Definition 4.1. An exact structure on an additive category A is a class of kernel–
cokernel pairs, closed under isomorphisms, satisfying the following axioms.

[E0 ] ∀ E ∈ A : idE is an admissible monomorphism;
[E0op ] ∀ E ∈ A : idE is an admissible epimorphism;
[E1 ] the class M of admissible monomorphisms is closed under composition;

[E1op ] the class P of admissible epimorphisms is closed under composition;
[E2 ] the push-out of an admissible monomorphism along an arbitrary morphism

exists and yields an admissible monomorphism;
[E2op ] the pull-back of an admissible epimorphism along an arbitrary morphism exists

and yields an admissible epimorphism.

Together with an exact structure, A is called an exact category. We will also use the
notation E = (M,P) to denote an exact structure.

It is not a coincidence that we chose the symbol M above; this will become clear in
the next section. An easy exercise shows that an abelian category equipped with the
exact structure given by all monomorphisms and all epimorphisms is an exact category.
On the other hand, Ban∞ is a non-abelian category which is an exact category when
endowed with the structure Emax of all kernel–cokernel pairs, see [6, Theorem 2.3.3].

We can now make contact with the notion of retract introduced in Section 2, Defini-
tion 2.3.
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Definition 4.2. A kernel–cokernel pair in an exact category A,

E // µ // F
π // // G

is split if there exist morphisms ν ∈ M(F,E) and ι ∈ P(G,F ) that make F a direct
sum of E and G (where P(G,F ) = {ρ ∈ MorA(G,F ) | ρ ∈ P}).

The following result is the analogue of the ‘Splitting Lemma’ in module theory.

Proposition 4.3. Let A be an exact category. The following are equivalent for a

kernel-cokernel pair E // µ // F
π // // G in (M,P):

(a) The kernel–cokernel pair is split;
(b) E is a retract of F with section µ;
(c) G is a retract of F with retraction π.

Proof. By definition, (a) implies both (b) and (c). Assume (b) and let ν ∈ HomA(F,E)
be such that νµ = idE . Then (idF − µν)µ = 0 so by the property of π = cokerµ there
is ι ∈ HomA(G,F ) such that idF − µν = ιπ and hence, idF = µν + ιπ. Moreover,

πιπ = π(idF − µν) = π − πµν = π

so that πι = idG follows as π is an epimorphism.
The implication (c) ⇒ (a) is proved in a similar way. �

In analogy with module theory we introduce the following concept.

Definition 4.4. An object F ∈ obj(A) is called M-semisimple if all kernel–cokernel

pairs of the form E // µ // F
π // // G in (M,P) split.

Corollary 4.5. The following are equivalent:

(a) Every object in A is M-injective;
(b) Every kernel–cokernel pair in (M,P) is split;
(c) Every object in A is M-semisimple.

Proof. This follows immediately from the definitions, Proposition 4.3 and Proposi-
tion 2.4. �

Example 4.6. Let R be a unital ring and let A = ModR. Let M be the class of all
monomorphisms in A. Then M-injectivity is the usual injectivity considered in module
theory, and the statement in Corollary 4.5 above is well known. In addition, see, e.g.,
[15, Theorem 4.40], every right R-module is projective; every right R-module is a direct
sum of simple submodules; and R is a finite direct product of matrix rings over division
rings (the Artin–Wedderburn theorem). In this situation, R is termed semisimple.

5. Dimension

In this section we come back to the topic of dimension. Let us approach it from the
point of view of splitting the short exact sequence (3.1):

0 // E
µ

// F
π // G // 0 (5.1)

If G is a free module then π automatically is a retraction; this continues to hold if G
is merely projective (a direct summand of a free module). On the other hand, if E
is injective, then it is an absolute retract (Proposition 2.4) so µ is a section and the
sequence splits too. We have a left–right symmetric situation here and it may thus not
come as a surprise that, in module theory, the ‘global dimension’ of the ring R can
be defined equivalently using projective or using injective modules; see, e.g., [15]. In
other categories, for example sheaves of modules over ringed spaces or their analogues



Injectivity 39

in C*-theory, see [3], there are enough injective but not enough projective objects. This
is why it may be desirable to focus on injectivity.

The starting point is: if an object is injective, its dimension should be 0. Now, and
from now on, suppose we have enough injectives. Then any object can be embedded
into an injective one and if it is a retract, then it is itself injective (Proposition 2.4)
so the dimension is still 0. But if it is not a retract then its dimension should be at
least 1. In this case it makes sense to consider the ‘quotient’ of the bigger injective
object by the smaller non-injective one: if this turns out to be injective, one would say
the dimension is equal to 1; otherwise at least 2. And so on . . .

Let us formalise this process. Suppose A is an exact category and M the class of
admissible monomorphisms (kernels of cokernels), cf. Definition 3.7. Take E ∈ obj(A).
As A has enough M-injectives, there are an M-injective I0 and µ ∈ M(E, I0). If µ is
a section we are done. Otherwise let π0 = cokerµ with codomain C1. If C1 is injective
we stop. Otherwise there are an M-injective I1 and µ0 ∈ M(C1, I1). If µ0 is a section
we stop; and so on . . .

E // µ
// I0

π0

%% %%
C1 // µ0

// I1

π1

%% %%
C2 // µ1

// I2

%% %%

(5.2)

Why have we written this long sequence as a staircase? Note that (µ, π0), (µ0, π1),
. . . , in general, (µk−1, πk) are kernel–cokernel pairs while the morphisms µkπk between
Ik−1 and Ik are compositions of a morphism in P followed by a morphism in M. This
means the sequence is ‘exact’ at the Ik whereas the morphisms between the M-injective
objects are of a special form.

Let’s have a look again at the canonical factorisation of a morphism in an abelian
category as displayed in (4.1). This is an essential ingredient in the workings of Homo-
logical Algebra; however, not every morphism in an exact category can be factorised in
such a way. In fact, if every morphism can be factorised as in (4.1) in an exact cate-
gory, then the category is already abelian. So we have to specialise to those morphisms,
which is done below. In addition, we have to define ‘long exact sequences’.

Definition 5.1. Let A be an exact category with exact structure E = (M,P). The
morphism f ∈ HomA(E,F ), E,F ∈ obj(A) is called admissible if it can be factorised
as

E
f

//

π     

F

G
>> µ

>>

for some admissible monomorphism µ and some admissible epimorphism π in A.
A sequence of admissible morphisms in A,

E1
f1 //

π1 $$ $$

E2
f2 //

π2 $$ $$

E3

G1

:: µ1

::

G2

:: µ2

::
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is said to be exact if the short sequence G1
// µ1 // E2

π2 // // G2 is exact (that is,

(µ1, π2) ∈ (M,P)). An arbitrary sequence of admissible morphisms in A is exact if the
sequences given by any two consecutive morphisms are exact.

We can now reformulate the above ‘staircase’ (5.2) by ‘straightening it out’ as follows.

Definition 5.2. Let E ∈ obj(A) for an exact category A. An M-injective resolution
of E is a sequence of the form

E // // I0
d0 // I1

d1 // I2
d2 // . . . (5.3)

where all the morphisms dk are admissible, the sequence is exact (at all Ik) and all Ik

are M-injective. (Note that this in particular implies that the sequence is a complex,
that is, dkdk−1 = 0 for all k ∈ N.)

We are now in a position to define a dimension using injectivity.

Definition 5.3. Let E ∈ obj(A) for an exact category A. We say E has finite M-

injective dimension if there exists a finite M-injective resolution (5.3) such that dk−1

is a section for some k ∈ N. In this case we define

M- dim(E) = min{k ∈ N | dk−1 is a section} (5.4)

as the M-injective dimension of E. In case E does not have a finite M-injective
resolution we put M- dim(E) = ∞ and say that E has infinite M-injective dimension.

Let us return to the staircase (5.2) using the same notation and put dk−1 = µk−1πk−1

for all k ≥ 1 to obtain (5.3). Suppose dk−1 is a section with retraction ρk−1 in
HomA(I

k, Ik−1). From idIk−1 = ρk−1dk−1 = ρk−1µk−1πk−1 we obtain idGkπk−1 =
πk−1ρk−1µk−1πk−1 which implies that idGk = πk−1ρk−1µk−1 as πk−1 is an epimor-
phism. Hence µk−1 is a section and Gk is a retract of the M-injective object Ik, thus
M-injective by Proposition 2.4. Conversely, if Gk is M-injective, then µk−1 is a sec-
tion (as Gk is an absolute M-retract) and we can replace Ik by Gk. Therefore finite
M-injective dimension really determines the first k ≥ 0 such that a morphism in an
injective resolution is a cokernel just as intended in the explanation of the staircase.
(Note also that, by Proposition 4.3, µk−1 is a section if and only if πk is a retraction.)

It would, however, be tedious to work through all possible injective resolutions in
order to find the injective dimension of an object. This is where the Hom-functor
comes in.

In the sequel, A will always denote an exact category with exact structure (M,P)
and with enough injectives. Firstly we observe that every object E ∈ obj(A) has an
M-injective resolution; this is the construction in the staircase (5.2). Secondly, all such
resolutions are equivalent in the following sense.

Definition 5.4. A complex in A, denoted by (E•, d•), is a sequence

. . . // En−1 dn−1

// En dn // En+1 // . . . (5.5)

such that (En)n∈Z is a sequence of objects in A, (dn)n∈Z is a sequence of admissible
morphisms dn ∈ HomA(E

n, En+1) and dn+1dn = 0 for all n ∈ Z.
Let (E•, d•) and (F •, ∂•) be two complexes in A. A morphism from (E•, d•) to

(F •, ∂•) is a sequence of morphisms En → Fn, n ∈ Z making the diagram below
commutative

. . . // En−1 dn−1

//

��

En dn //

��

En+1 //

��

. . .

. . . // Fn−1 ∂n−1

// Fn ∂n

// Fn+1 // . . .

(5.6)
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Definition 5.5. Let ϕ, ψ : (E•, d•) → (F •, ∂•) be morphisms of complexes in A. Then
ϕ is homotopic to ψ, written as ϕ ≃ ψ, if there is a sequence (σn)n∈Z of morphisms
σn ∈ HomA(E

n, Fn−1) such that, for all n ∈ Z, we have

ϕn − ψn = ∂n−1σn + σn+1dn. (5.7)

This defines an equivalence relation on the class of morphisms of complexes.
The two complexes (E•, d•) and (F •, ∂•) are called homotopic if there exist mor-

phisms ϕ : (E•, d•) → (F •, ∂•) and ϕ̄ : (F •, ∂•) → (E•, d•) such that ϕ̄ϕ ≃ id(E•,d•) and
ϕϕ̄ ≃ id(F •,∂•).

To an M-injective resolution (5.3) one associates a complex (I•, d•), where E is
deleted from the sequence and all In = 0 for n < 0 (in particular, d−1 = 0). The
following is a standard result in Homological Algebra, see, e.g., [10, Proposition IV.4.5],
since the arguments used in abelian categories take over in exact categories, cf. [5] and
[16, Chapter 3].

Proposition 5.6. Any two M-injective resolutions of E ∈ obj(A) are homotopic.

In analogy to the contravariant Hom-functor (3.2) one has the covariant Hom-functor.
Let F ∈ obj(A) be arbitrary and define

HomA(F, –) : A −→ Ab

E 7−→ HomA(F,E)

HomA(G,E) ∋ f 7−→ f∗ = Hom(f, F )

(5.8)

given by f∗(g) = fg for g ∈ HomA(F,G). Then f∗ : HomA(F,G) → HomA(F,E) is
a group homomorphism, and ‘covariant’ means that (f1f2)

∗ = f∗1 f
∗
2 for composable

morphisms f1 and f2.
Apply this functor to the complex (I•, d•) to obtain a complex as below in Ab

0 // HomA(F, I
0)

d0
∗ // HomA(F, I

1)
d1
∗ // HomA(F, I

2) // . . . (5.9)

In general, this is no longer an exact sequence so one applies homology, that is, takes
the quotient group ker dk+1

∗ / im dk∗ which is possible since dk+1
∗ dk∗ = 0.

Definition 5.7. Let A be an exact category with enough injectives. Let F ∈ obj(A)
be fixed. Let E ∈ obj(A) and (I•, d•) be the complex associated to an M-injective
resolution (5.3) of E. Each ker dk+1

∗ / im dk∗ is called the k-th cohomology group and will
be denoted by Extk(F,E).

Remark 5.8. Either by definition or left exactness of HomA(F, –) we have Ext
0(F,E) ∼=

HomA(F,E) for all F and E.

Though it appears that the above definition depends on the choice of the injective
resolution, in fact, by Proposition 5.6, any two injective resolutions of E are homotopic
and this is preserved by the functor HomA(F, –). As a consequence, the homology is the
same. For details, see, e.g., [10, Section IV.3]. Moreover, for each ϕ ∈ HomA(E,E

′) one
can define a homomorphism ϕ∗ : Ext

k(F,E) → Extk(F,E′), k ∈ N and hence obtains
the k-th right derived functor of HomA(F, –). See [10, Section IV.5] for more details.

We finally state how these gadgets can help to determine the injective dimension.

5.9 Injective Dimension Theorem. Let A be an exact category with enough injec-
tives. Let n ∈ N. The following are equivalent for an object E ∈ obj(A):

(a) M- dim(E) ≤ n;
(b) Extm(F,E) = 0 for all m > n and all F ∈ obj(A);
(c) Extn+1(F,E) = 0 for all F ∈ obj(A);
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(d) Extn(–, E) : A → Ab is exact;
(e) there exists an M-injective resolution of E whose n-th cokernel is M-injective;
(f) for every M-injective resolution of E the n-th cokernel is M-injective.

A proof of this result for module categories and more general abelian categories can
be found in [15] and its extension to exact categories in [16].

6. Operator Modules

In [16], the above theory is applied to the category of operator modules over a C*-algebra
and, in more general form, to sheaves of operator modules over C*-ringed spaces in [3];
see also [13]. Throughout this section A will denote a unital C*-algebra.

Definition 6.1. A unital right A-module E which at the same time is an operator space
is a right operator A-module if it satisfies either of the following equivalent conditions:

(a) There exist a complete isometry Φ: E −→ B(H,K), for some Hilbert spaces H, K,
and a *-homomorphism π : A −→ B(H) such that Φ(x·a) = Φ(x)π(a) for all x ∈ E,
a ∈ A.

(b) The bilinear mapping E×A −→ E, (x, a) 7→ x ·a extends to a complete contraction
E ⊗h A −→ E.

(c) For each n ∈ N, Mn(E) is a right Banach Mn(A)-module in the canonical way.

Our general reference for operator modules is [4], where, for instance, the Haagerup
tensor product in the above definition, part (b) is treated in great detail. See also [16,
Appendix A] for an in-depth discussion of this type of module and comparisons to other
kinds of ‘operator space modules’. We will denote by OMod∞

A the category with objects
the right operator A-modules and morphisms the completely bounded A-module maps.
It is similar to the category Ban∞, in particular it is not abelian, but the morphisms
respect the so-called matricial structure of a C*-algebra, which has become important
in that area since the 1970s.

In OMod∞
A , a morphism T is a kernel iff it is a completely bounded isomorphism

onto its image, and it is a cokernel iff it is surjective and completely open. (Note that
there is no Open Mapping Theorem for operator spaces.)

Theorem 6.2 ([16], Theorem 4.40; see also [3]). The class (M,P) of all kernel–cokernel
pairs in OMod∞

A is an exact structure on OMod∞
A .

Consequently, and since OMod∞
A has enough injectives, by Wittstock’s Hahn–Banach

theorem [8, Theorem 4.1.5], we can apply the ideas developed above. One is particularly
interested in an invariant for the C*-algebra A, and hence defines a ‘global dimension’
in analogy to the concept from ring theory.

Definition 6.3. The global C*-dimension of a (unital) C*-algebra A is defined by

C*- dim(A) = sup{M- dim(E) | E ∈ OMod∞
A }.

Recall, from Example 4.6, that a unital ring R is semisimple (in the classical sense)
if and only if every module in ModR is injective; that is, has global dimension equal
to zero. These rings are described by the Artin–Wedderburn theorem. One might hope
that a similar class of C*-algebras could also be identified; however, this is not the case!

Example 6.4. The unital C*-algebra C has global C*-dimension greater than 0. This
follows immediately from the fact that c0, viewed as a C-module in a canonical way,
is an operator module and is completely isometrically embedded into ℓ∞. The latter
is injective as an operator module (as every bounded linear map into ℓ∞ is completely
bounded [8, Proposition 2.2.6]) and thus, if c0 was injective, it would have to be a retract
of ℓ∞ (Proposition 2.4) which it is not (Example 2.5). Thus c0 is not M-injective in
OMod∞

C
.



Injectivity 43

In fact, the same statement holds for every unital C*-algebra A; one can use the
compact operators on an infinite-dimensional Hilbert space in place of c0. But let us
move on to dimension 1.

Proposition 6.5. The global C*-dimension of A is at most one if and only if every
complete quotient of an M-injective object in OMod∞

A is M-injective.

This follows immediately from the Injective Dimension Theorem (5.9) as a complete
quotient is nothing but the image F of a cokernel so we can apply the equivalence of

(a), (e) and (f) to an injective presentation E // µ // I
π // // F with I M-injective.

But it turns out that the condition in the above proposition always fails.

Theorem 6.6. The global C*-dimension of every unital C*-algebra is at least 2.

The details of the proof can be found in [16, Chapter 5]; an important ingredi-

ent is the injective presentation K(H) // // B(H) // // B(H)/K(H) for an infinite-

dimensional Hilbert spaceH and the classical fact that ℓ∞/c0 is not injective inBan∞ [2].
At this moment, no C*-algebra with global C*-dimension equal to 2 is known; in

fact, it is unclear whether there is any C*-algebra with finite dimension.
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