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Invertibility preserving mappings onto finite C∗-algebras

by

Martin Mathieu (Belfast) and Francois Schulz (Johannesburg)

Abstract. We prove that every surjective unital linear mapping which preserves in-
vertible elements from a Banach algebra onto a C∗-algebra carrying a faithful tracial state
is a Jordan homomorphism, thus generalising Aupetit’s 1998 result for finite von Neumann
algebras.

1. Introduction. A linear mapping T between two unital, complex
Banach algebras is said to be spectrum-preserving if, for every element a in
the domain algebra, its spectrum σ(a) coincides with σ(Ta). Provided the
codomain is semisimple and T is surjective, T must be bounded (a result
belonging to Aupetit [1, Theorem 5.5.2]). Provided the domain is semi-
simple too, T is injective; this follows from Zemánek’s characterisation of
the radical [1, Theorem 5.3.1], as for each a such that Ta = 0 and for
every x,

σ(a+ x) = σ(Ta+ Tx) = σ(Tx) = σ(x),

which implies that a belongs to the radical, which is zero in the semi-
simple case. Moreover, T1 = 1, that is, T is unital. As a result, a surjective
spectrum-preserving mapping between semisimple Banach algebras is a topo-
logical isomorphism, and one naturally wonders if it is also an isomorphism
of (some of) the algebraic structure.

A Jordan homomorphism is a linear mapping T with the property T (a2)=
(Ta)2 for all a in the domain (which is equivalent to T (ab + ba) = TaTb +
TbTa for all a and b). A Jordan isomorphism turns out to be spectrum-
preserving, and a lot of work has been invested to explore to what extent
the reverse implication holds. A pleasant survey on the history of this topic
is contained in [2]; see also [8, 13, 14] for related questions.
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In [3], Aupetit proved that every surjective spectrum-preserving linear
mapping between von Neumann algebras is a Jordan isomorphism. It is not
difficult to see that it suffices that one of the algebras is a unital C∗-algebra
of real rank zero and the other a unital semisimple Banach algebra. However,
the problem remains open for general C∗-algebras. It is also known that the
assumption on T can be relaxed to a surjective unital invertibility-preserving
linear mapping (that is, σ(Ta) ⊆ σ(a) for all a); the conclusion is then that
T is a Jordan homomorphism.

In an earlier paper [2], Aupetit had already obtained the same result for
finite von Neumann algebras. The main tool in that result was the Fuglede–
Kadison determinant ∆; see [9, p. 105] for its definition and properties. Its
relation to the finite trace τ is given by ∆(a) = exp(τ(log |a|)), for every
invertible element a. In our approach we bypass the determinant and work
exclusively with a (faithful) tracial state instead in order to obtain the fol-
lowing generalisation.

Theorem. Let B be a unital complex Banach algebra and let A be a
unital finite C∗-algebra. Let T : B → A be a surjective unital linear mapping
which preserves invertible elements. Then T is a Jordan homomorphism.

We largely follow Aupetit’s arguments, but to emphasise the differences
we split up the proof into a series of lemmas in the next section.

2. Preliminaries. Let A be a unital C∗-algebra. We say that A is finite
if it comes equipped with a faithful tracial state, that is, a linear functional τ
such that τ(1) = 1 = ∥1∥, τ(ab) = τ(ba) for all a, b ∈ A and τ(a∗a) = 0
implies a = 0. Such a functional is necessarily positive and bounded.

We denote the set of all states of A (positive linear functionals of norm 1)
by S and by Sp the subset of all spectral states f of A, that is, f ∈ S and
|f(x)| ≤ ρ(x) for every x ∈ A, where ρ(x) denotes the spectral radius of x.
It is known [7, Theorem 4 in §13] that every f ∈ Sp has the trace property,
that is, f(ab) = f(ba) for all a, b ∈ A, and that f(a) ∈ coσ(a), the convex
hull of the spectrum σ(a) of a, for each a ∈ A; see [7, Lemma 2 in §13] or
[1, Lemma 4.1.15].

Conversely, every tracial state τ belongs to Sp as follows from the sub-
sequent argument. For a ∈ A, denote by V (a) = {f(a) | f ∈ S} its (algebra)
numerical range [7]. As is shown in [5, Lemma], and attributed to [11, §2],
coσ(a) =

⋂
b∈G(A) V (bab−1), where G(A) stands for the group of invertible

elements in A. Clearly, τ(a) belongs to the right hand side of the above
identity, and hence τ ∈ Sp. (See also [12].)

Lemma 2.1. Let A be a unital C∗-algebra with faithful tracial state τ .
Suppose that g : C → A is an entire function with values in G(A). Then the
mapping gτ : C → R, gτ (λ) = τ(log(|g(λ)|), is harmonic.
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Proof. The argument in the proof of Théorème 1.11 in [2], which is al-
ready entirely formulated in terms of the trace, takes over verbatim.

In the following, T will denote a surjective unital linear mapping de-
fined on a (complex, unital) Banach algebra B with values in a finite unital
C∗-algebra A. We will assume that T preserves invertible elements so that
TG(B) ⊆ G(A). It follows from [1, Theorem 5.5.2] that T is bounded.

Fix a, b ∈ B and define

g : C× C → G(A), g(λ, µ) = T (eλaeµb)e−λTae−µTb.

Then g is a separately entire function. Its series expansion reads as follows:

g(λ, µ) = 1 +
λ2

2

(
T (a2)− (Ta)2

)
+

µ2

2

(
T (b2)− (Tb)2

)
+ λµ

(
T (ab)− TbTa

)
+

λ3

6

(
T (a3) + 2(Ta)3 − 3T (a2)Ta

)
+

λ2µ

2

(
T (a2b) + (Ta)2Tb+ Tb(Ta)2 − T (a2)Tb− 2T (ab)Ta

)
+

λµ2

2

(
T (ab2) + 2TbTaTb− 2T (ab)Tb− T (b2)Ta

)
+

µ3

6

(
T (b3) + 2(Tb)3 − 3T (b2)Tb

)
+ remainder

where the remainder only contains terms of degree 4 or higher in λ and µ;
we will put it to good use in the proof of the main theorem.

By Lemma 2.1, the function

gτ : C× C → R, gτ (λ, µ) = τ(log(|g(λ, µ)|)),

is separately harmonic in λ and µ and thus there exists a separately entire
function h(λ, µ) such that Reh(λ, µ) = gτ (λ, µ) for all λ, µ ∈ C.

The next step will be to establish the following three lemmas; for their
proofs, see Section 3.

Lemma 2.2. For all λ, µ ∈ C, we have egτ (λ,µ) ≤ ∥g(λ, µ)∥.

Lemma 2.3. With the above notation and caveats, let g∗(λ, µ) stand for
(g(λ, µ))∗. There exists r > 0 such that, for all λ, µ ∈ C with |λ|, |µ| < r, we
have

2Reh(λ, µ) = τ
(
log(g∗(λ, µ)g(λ, µ))

)
= −

∞∑
k=1

1

k
τ
(
(1− g∗(λ, µ)g(λ, µ))k

)
.

Lemma 2.4. For all λ, µ in a neighbourhood of zero,

τ
(
log(g∗(λ, µ)g(λ, µ))

)
= 0.
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3. Proofs of the lemmas and the main theorem. The argument of
the first lemma differs from [2] in that we cannot make use of the determinant
in order to locate the appropriate values in the convex hull of the spectrum.

Proof of Lemma 2.2. As we observed above,

τ(log(|g(λ, µ)|)) ∈ coσ(log(|g(λ, µ)|))
for all λ, µ ∈ C. Since the spectrum of log(|g(λ, µ)|) is contained in R, it
follows that coσ(log(|g(λ, µ)|)) = [s, t] for some s, t ∈ σ(log(|g(λ, µ)|)) with
s ≤ t. Since the exponential function is strictly increasing, the Spectral
Mapping Theorem implies that

egτ (λ,µ) ∈ [es, et] = coσ(elog(|g(λ,µ)|)) = coσ(|g(λ, µ)|).
As a result, 0 < egτ (λ,µ) ≤ ρ(|g(λ, µ)|), and therefore

e2gτ (λ,µ) ≤ ρ(|g(λ, µ)|)2 = ρ(|g(λ, µ)|2) = ρ(g∗(λ, µ)g(λ, µ))

= ∥g∗(λ, µ)g(λ, µ)∥ = ∥g(λ, µ)∥2

as claimed.

The next argument is rather straightforward.

Proof of Lemma 2.3. As g(0, 0) = T1 = 1, by continuity, there is r > 0
such that, for all λ, µ with |λ|, |µ| < r, we have ∥1 − g∗(λ, µ)g(λ, µ)∥ < 1.
The series expansion of the logarithm thus yields

(3.1) − log(g∗(λ, µ)g(λ, µ)) =

∞∑
k=1

1

k
(1− g∗(λ, µ)g(λ, µ))k.

The definition of gτ entails that

2Reh(λ, µ) = 2τ(log(|g(λ, µ)|)) = τ(log(|g(λ, µ)|2))
= τ

(
log(g∗(λ, µ)g(λ, µ))

)
.

Combining these two identities gives the claim.

The proof of the third lemma follows exactly Aupetit’s arguments. (There
appears to be some misprint at the bottom of p. 61 and top of p. 62 of [2].)

Proof of Lemma 2.4. For all λ, µ ∈ C, we have

|eh(λ,µ)| = eReh(λ,µ) = egτ (λ,µ) ≤ ∥g(λ, µ)∥
by Lemma 2.2. Since

∥g(λ, µ)∥ ≤ ∥T∥ e|λ|(∥a∥+∥Ta∥)+|µ|(∥b∥+∥Tb∥)

it follows that eh(λ,µ) = eαλ+βµ+γ for suitable α, β, γ ∈ C [4, Lemma 3.2].
As gτ (0, 0) = 0 we have |eγ | = 1, thus we may assume that γ = 0 (since we
need only the real part of γ). Therefore, 2Reh(λ, µ) = αλ+ βµ+ ᾱλ̄+ β̄µ̄.
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From Lemma 2.3 we obtain

αλ+ βµ+ ᾱλ̄+ β̄µ̄ = −
∞∑
k=1

1

k
τ
(
(1− g∗(λ, µ)g(λ, µ))k

)
for all λ, µ such that |λ|, |µ| < r for suitable r > 0. The series expansion of
g(λ, µ) above does not contain any powers of λ or µ of first order, hence the
series expansion in (3.1) cannot either. This entails that both α and β are
equal to zero.

It now follows from Lemma 2.3 that τ(log(g∗(λ, µ)g(λ, µ))) = 0.

We now have all the tools to prove our main theorem by adapting the
arguments in [2, Theorem 1.12] to our situation.

Proof of the Theorem. Set f(λ, µ) =
∑∞

k=1
1
kτ((1− g∗(λ, µ)g(λ, µ))k) for

all λ, µ such that |λ|, |µ| < r for suitable r > 0 (given by Lemma 2.3). By
Lemma 2.4, f = 0 and thus

∂2

∂λ∂µ
f(0, 0) = 0 =

∂3

∂λ2∂µ
f(0, 0).

Using these identities after substituting in the series expansion of g into the
log-series, we find that

(3.2) τ(T (ab)− TaTb) = 0

and

(3.3) τ
(
T (a2b) + (Ta)2Tb+ Tb(Ta)2 − T (a2)Tb− 2T (ab)Ta

)
= 0

for all a, b ∈ B. From (3.2) we obtain

τ(T (a2b)) = τ(T (a2)Tb)

and
τ(T (a2b)) = τ(T (a(ab))) = τ(TaT (ab))

so that (3.3) reduces to

τ((Ta)2Tb) = τ(TaT (ab)),

using the trace property. It follows that

τ((Ta)2Tb) = τ(T (a2)Tb).

Since T is surjective we may choose b ∈ B such that Tb = ((Ta)2 − T (a2))∗

wherefore the last identity yields, for each a ∈ B,

τ
(
((Ta)2 − T (a2))((Ta)2 − T (a2))∗

)
= 0.

The faithfulness of τ implies that T is a Jordan homomorphism.
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4. Conclusions. In this section, we collect together some consequences
and sharpening of our main theorem. We also relate it to open problems of
a similar nature.

Suppose T is a surjective linear mapping between two semisimple unital
Banach algebras which preserves the spectrum of each element. Then T is
injective (as explained in the Introduction) and T1 = 1. The latter follows,
for example, from

σ((T1− 1) + Tx) = σ(T1 + Tx)− 1 = σ(1 + x)− 1 = σ(x) = σ(Tx)

and the surjectivity of T which entails that σ((T1 − 1) + y) = σ(y) for
all y in the codomain. Thus, by Zemánek’s characterisation of the radical,
T1− 1 = 0.

As a result, we have a symmetric situation and can apply the Theorem
to either T or its inverse to obtain the following consequence.

Corollary 4.1. Let T be a surjective spectrum-preserving linear map-
ping between two semisimple unital Banach algebras. If either of them is a
unital C∗-algebra equipped with a faithful tracial state, then T is a Jordan
isomorphism.

This is another contribution to a longstanding, still open problem by
Kaplansky, who asked in 1970 whether the above statement holds without any
further assumptions on the Banach algebras. For further references, see [2, 10].

All the steps in the proof of the Theorem but the very last one can be
performed for each individual tracial state on a unital C∗-algebra. Therefore,
the assumption can be relaxed to the existence of a faithful family of tracial
states, that is, a family {τi | i ∈ I} of tracial states τi such that τi(a

∗a) = 0
for all i ∈ I implies a = 0.

In particular, since any tracial state on a simple unital C∗-algebra is
faithful, we obtain the following result.

Corollary 4.2. Let T : B → A be a surjective unital invertibility-
preserving linear mapping into a simple unital C∗-algebra A which carries a
tracial state. Then T is a Jordan homomorphism.

Remark 4.3. Our terminology of a “finite” C∗-algebra is not quite stan-
dard. In [6, III.1.3.1], a unital C∗-algebra A is called finite if the identity
of A is a finite projection; that is, there is no proper subprojection which is
Murray–von Neumann equivalent to 1. Every unital C∗-algebra with a faith-
ful tracial state is finite in this sense, but the converse fails in general (though
it holds for stably finite exact C∗-algebras). We prefer here a definition that
does not make reference to any projections.

We can also strengthen our main theorem in a different direction. Let
G1(B) denote the principal component of G(B), where B is a unital Banach
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algebra. It is known (see, e.g., [1, Theorem 3.3.7]) that
G1(B) = {ex1 · · · exn | xi ∈ B, n ∈ N}.

The associated exponential spectrum of x ∈ B is
σε(x) = {λ ∈ C | λ− x /∈ G1(B)}.

In certain situations it is more natural and expedient to consider the ex-
ponential spectrum instead of the smaller spectrum; see, e.g., [1, Theo-
rem 3.3.8]. From the proof of our main result we see that it suffices that
the mapping T sends the product of any two exponentials in B onto an
invertible element in A. This gives the following corollary.

Corollary 4.4. Let B be a unital complex Banach algebra and let A
be a unital finite C∗-algebra. Let T : B → A be a surjective unital linear
mapping such that TG1(B) ⊆ G(A). Then T is a Jordan homomorphism.

A spectral isometry between two Banach algebras A and B is a linear
mapping S such that ρ(Sx) = ρ(x) for all x ∈ A. Clearly, every spectrum-
preserving mapping is a spectral isometry and so is every Jordan isomor-
phism. A conjecture related to Kaplansky’s problem mentioned above states
that every unital surjective spectral isometry between two C∗-algebras is a
Jordan isomorphism. This conjecture has been confirmed in many cases (see,
e.g., [13, 14]), but is open in all generality. Notably, it was verified in [15]
if A is a unital C∗-algebra of real rank zero and without tracial states. The
above Corollary 4.1 is thus a step forward in the direction of confirming the
general conjecture.
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