
CHARACTERIZING JORDAN HOMOMORPHISMS
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Abstract. It is shown that every bounded, unital linear mapping that preserves
elements of square zero from a C*-algebra of real rank zero and without tracial states
into a Banach algebra is a Jordan homomorphism.

Throughout, A and B will be (at least) unital complex Banach algebras. A Jordan ho-
momorphism between A and B is a linear mapping T : A→ B such that T (x2) = (Tx)2

for all x ∈ A. That is, T is a homomorphism of the associated special Jordan al-
gebras A+ and B+. The quest of characterizing Jordan homomorphisms by spectral
conditions is largely motivated by Kaplansky’s question from the 1970s whether ev-
ery unital, bounded, surjective linear mapping T which preserves invertibility between
semisimple Banach algebras must be a Jordan epimorphism (i.e., a surjective Jordan ho-
momorphism). All listed conditions are well known to be necessary (where unital means
T1 = 1). While this problem is open in the stated generality, many contributions under
additional conditions on the algebras have been obtained (see, e.g., the survey [9]), no-
tably if the domain is a C*-algebra. Aupetit [3] affirmed Kaplansky’s question for von
Neumann algebras, and his proof can easily be adapted to the situation where A is a
unital C*-algebra with real rank zero and B is any semisimple unital Banach algebra;
cf. [8, Theorem 1.1].

The abundance of projections in C*-algebras with real rank zero (i.e., every self-
adjoint element can be approximated by finite linear combinations of orthogonal pro-
jections) is a key ingredient via the following result; see [10, Lemma 2.1] or [7, Lemma 1].

Lemma 1. Let T : A→ B be a bounded linear operator from a C*-algebra A with real
rank zero into a Banach algebra B sending projections in A to idempotents in B. Then
T is a Jordan homomorphism.

With few exceptions, see, e.g., [11], the assumption of real rank zero in the domain
has remained essential. The connection between idempotents and elements of square
zero is provided by the following lemma from [10, Lemma 3.3].

Lemma 2. Let T : A→ B be a linear mapping between Banach algebras A and B which
preserves elements with square zero. If e, f are orthogonal idempotents in A, then

(Ta)(Tb) + (Tb)(Ta) = 0
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for all a ∈ eAe, b ∈ fAf which can be written as finite sums of elements with square
zero.

Let A be a unital C*-algebra and denote by N (2) the linear span of all elements in
A with square zero and by [A,A] the linear span of all commutators [x, y] = xy − yx,
x, y ∈ A. Every square-zero element x is a commutator; e.g., write x =

[
v|x|1/2, |x|1/2

]
where x = v|x| is the polar decomposition of x (in a faithful representation of A or
the enveloping von Neumann algebra A∗∗). Indeed, (|x|1/2v|x|1/2)(|x|1/2v|x|1/2)∗ =
|x|1/2xv∗|x|1/2 = 0 since |x|1/2 belongs to the C*-subalgebra generated by x∗x and
(x∗x)x = 0. Consequently, N (2) ⊆ [A,A] in general.

Recall that a tracial state on A is a positive linear functional τ of norm 1 such
that τ(xy) = τ(yx) for all x, y ∈ A. Clearly [A,A] ⊆ ker τ for every tracial state τ .
Therefore, an obstruction for the equality A = [A,A] is the existence of a tracial state.
Pop [13] proved that this is the only obstruction. On the other hand, Robert showed
in [14, Theorem 4.2] that [A,A] = N (2) provided A has no characters. Combining these
two results we obtain a characterization of the identity N (2) = A.

Lemma 3. Let A be a unital C*-algebra. Then every element of A is a finite sum of
square zero elements if and only if A has no tracial states.

This is clear as every character is a tracial state.

We now put the results above together to verify a conjecture, in the real rank zero
case, which we first stated in [8]; see also [6].

Theorem. Let A be a unital C*-algebra with real rank zero and dimA ≥ 2. The
following conditions are equivalent.

(a) A has no tracial states;
(b) every bounded unital linear mapping from A into a unital Banach algebra preserving

square zero elements is a Jordan homomorphism.

Proof. Evidently we have to exclude the case dimA < 2 since every unital linear map-
ping is multiplicative in this case.

Suppose τ is a tracial state on A. Since N (2) ⊆ [A,A] ⊆ ker τ , τ preserves square
zero elements. Therefore, assumption (b) entails that τ is a character on A. Hence
A = ker τ ⊕ C1 and ker τ is a maximal ideal. Assume first that A is not commutative.
Let S be an *-automorphism of A and pick γ ∈ (0, 1). Set

T : A→ A, Tx = γ Sx+ (1− γ) τ(x).

Then T is a unital bounded linear mapping on A, with ‖T‖ = 1, and, for all x, y ∈ A,

(Tx)(Ty) = γ2 (Sx)(Sy) + (1− γ)2 τ(x)τ(y) + γ(1− γ) τ(y)Sx+ γ(1− γ) τ(x)Sy.

Take x ∈ A non-zero such that x2 = 0 (such x exists only if A is noncommutative) and
put y = x. Then (Tx)2 = γ2 (Sx)2 = γ2 S(x2) = 0 so T preserves elements of square
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zero and hence is a Jordan homomorphism under condition (b). On the other hand, for
y = x∗,

(Tx)(Ty) + (Ty)(Tx) = γ2
(
(Sx)(Sy) + (Sy)(Sx)

)
= γ2 S(xy + yx)

6= γ S(xy + yx) = T (xy + yx),

a contradiction. Assume now that A is commutative. Since dimA ≥ 2 there is another
character τ ′ 6= τ of A. Take x, y ∈ A such that τ(x) = 0, τ ′(x) = 1, τ(y) = 1
and τ ′(y) = 0. Put ρ = 1

2
(τ + τ ′) which is another tracial state thus a character, by

condition (b). Then

ρ(xy) = 1
2
(τ(x)τ(y) + τ ′(x)τ ′(y)) = 0 6= 1

4
= ρ(x)ρ(y)

which is a contradiction.
Consequently, condition (b) rules out the existence of tracial states on A, that is,

condition (a) holds.
Conversely assume condition (a). Let T : A→ B be a bounded linear mapping from

A into a unital Banach algebra B with T1 = 1 and suppose that (Tx)2 = 0 for every
x ∈ A with x2 = 0. Let p be a non-trivial projection in A. As every bounded trace
τ on the hereditary C*-subalgebra pAp extends to A, pAp has no tracial states. (This
is known and follows, e.g., from combining [4, Proposition II.4.2] to extend τ from the
(completely) full hereditary C*-algebra to the closed ideal ApA and then onto all of A,
a slick proof of the latter is contained in [15, Lemma 3.1].) Lemma 3 thus entails that
every element in pAp is a finite sum of square zero elements. By Lemma 2, we conclude
that

0 = (Tp)(T (1− p)) + (T (1− p))(Tp) = 2Tp− (Tp)2

and thus Tp is an idempotent in B. Now Lemma 1 finishes the proof. �

The above result extends Theorem 2.4 in [6] for the purely infinite case. Note that
every bounded linear mapping which vanishes on elements of square zero necessarily is

a trace as N (2) = [A,A] ([1, Proposition 2.2] or [14, Corollary 2.3]).

A linear mapping T : A → B is said to be spectrally bounded if r(Tx) ≤ M r(x) for
some constant M ≥ 0 and all x ∈ A. Here, r( · ) denotes the spectral radius. When
B is semisimple and T is surjective, spectral boundedness implies boundedness of T [2,
Theorem 5.5.2]. Every Jordan epimorphism T is unital and preserves invertibility [5,
Lemma 4.1]; hence, it is spectrally bounded with constant 1.

Suppose that A is a unital C*-algebra and B is a unital semisimple Banach algebra. It
was observed in [10, Lemma 3.1] that surjective spectrally bounded operators preserve
nilpotency, we restrict ourselves to elements of square zero here.

Lemma 4. Let T : A → B be spectrally bounded and surjective. For every x ∈ A with
x2 = 0 we have (Tx)2 = 0.
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Corollary. Let T : A→ B be a unital surjective spectrally bounded operator from a uni-
tal C*-algebra A with real rank zero and without tracial states onto a unital semisimple
Banach algebra B. Then T is a Jordan epimorphism.

This is now immediate from the theorem and Lemma 4.
The statement of the corollary was obtained under the additional assumption that A

is simple in [8, Theorem 3.1]. For properly infinite von Neumann algebras it is in [10,
Theorem 3.6] and for A purely infinite of real rank zero in [6, Corollary 2.5] (which
extended the simple case treated in [7, Theorem B]).

In the case when the domain C*-algebra has a tracial state, the above statement fails
already in the finite-dimensional situation. In fact, a unital surjective linear mapping
T : Mn(C)→ Mn(C) is spectrally bounded if and only if it is of the form Tx = γ Sx+
(1− γ) τ(x), x ∈Mn(C) for a unique non-zero complex number γ and a unique Jordan
isomorphism S on Mn(C), where τ denotes the unique tracial state on Mn(C); cf. [9],
Example 5.3 and Remark 5.5.

On the other hand the assumption that T is unital can sometimes be relaxed, see for
example [9], in particular when T is a spectral isometry , that is, r(Tx) = r(x) for all
x ∈ A; see [12], Proposition 2.3 and Corollary 2.4. The above corollary also removes
an additional assumption on the primitive ideal space of the domain algebra from [11,
Theorem 3.6].
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