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Introduction History New Results

1978 Pedersen introduces Mloc(A)

as “algebra of essential multipliers”

2003 Ara–Mathieu book gives comprehensive account

but did not answer Pedersen’s question
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Introduction History New Results

1978 Pedersen introduces Mloc(A)

as “algebra of essential multipliers”

Definition

For every C*-algebra A,

Mloc(A) = lim−→ I∈Ice(A)
M(I ),

is its local multiplier algebra, where J //

  

M(J)

M(I )

;;

for J ⊆ I

Ice(A) the filter of all closed essential ideals of A;

M(I ) = {y ∈ B(H) | yI + Iy ⊆ I} multiplier algebra of I .

2003 Ara–Mathieu book gives comprehensive account

but did not answer Pedersen’s question
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1978 Pedersen introduces Mloc(A)

Theorem

Let A be a separable C*-algebra. Every derivation d : A→ A
extends uniquely to a derivation d : Mloc(A)→ Mloc(A) and there
is y ∈ Mloc(A) such that d = ad y
(that is, dx = [x , y ] = xy − yx for all x ∈ A).

2003 Ara–Mathieu book gives comprehensive account

but did not answer Pedersen’s question
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1978 Pedersen introduces Mloc(A)

Question

Is Mloc(Mloc(A)) = Mloc(A) for every C*-algebra A?

in general, A ⊆ Mloc(A) ⊆ Mloc(Mloc(A)) ⊆ . . .

2003 Ara–Mathieu book gives comprehensive account

but did not answer Pedersen’s question
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Introduction History New Results

1978 Pedersen introduces Mloc(A)

Question

Is Mloc(Mloc(A)) = Mloc(A) for every C*-algebra A?

in general, A ⊆ Mloc(A) ⊆ Mloc(Mloc(A)) ⊆ . . .
positive answer for

A commutative;

A simple (Mloc(A) = M(A));

A AW*-algebra, in particular von Neumann algebra (Mloc(A) = A).

2003 Ara–Mathieu book gives comprehensive account

but did not answer Pedersen’s question
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Introduction History New Results

1978 Pedersen introduces Mloc(A)

2003 Ara–Mathieu book gives comprehensive account

2006 Ara–Mathieu provide unital, separable, primitive
AF-algebra A such that Mloc(Mloc(A)) 6= Mloc(A)

2008 Ara–Mathieu A = C (X )⊗ B(H), certain X

2009 Argerami–Farenick–Massey A = C [0, 1]⊗ K (H)

common features of last two:

A ⊆ Mloc(A) ⊆ Mloc(Mloc(A)) ⊆ . . . ⊆ I (A), the injective
envelope
formulas for Mloc(A) and I (A)
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2008 Ara–Mathieu give more (concrete) examples, such as
A = C (X )⊗ B(H) for H separable and X spectrum
of Mloc(C [0, 1])

2009 Argerami–Farenick–Massey show
A = C [0, 1]⊗ K (H) is an example.

2008 Ara–Mathieu A = C (X )⊗ B(H), certain X

2009 Argerami–Farenick–Massey A = C [0, 1]⊗ K (H)

common features of last two:

A ⊆ Mloc(A) ⊆ Mloc(Mloc(A)) ⊆ . . . ⊆ I (A), the injective
envelope
formulas for Mloc(A) and I (A)

Martin Mathieu (Queen’s University Belfast)

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology



Introduction History New Results

1978 Pedersen introduces Mloc(A)

2003 Ara–Mathieu book gives comprehensive account

2006 Ara–Mathieu provide unital, separable, primitive
AF-algebra A such that Mloc(Mloc(A)) 6= Mloc(A)

2008 Ara–Mathieu give more (concrete) examples, such as
A = C (X )⊗ B(H) for H separable and X spectrum
of Mloc(C [0, 1])

2009 Argerami–Farenick–Massey show
A = C [0, 1]⊗ K (H) is an example.

2008 Ara–Mathieu A = C (X )⊗ B(H), certain X

2009 Argerami–Farenick–Massey A = C [0, 1]⊗ K (H)

common features of last two:

A ⊆ Mloc(A) ⊆ Mloc(Mloc(A)) ⊆ . . . ⊆ I (A), the injective
envelope
formulas for Mloc(A) and I (A)

Martin Mathieu (Queen’s University Belfast)

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology



Introduction History New Results

1978 Pedersen introduces Mloc(A)

2003 Ara–Mathieu book gives comprehensive account

2006 Ara–Mathieu provide unital, separable, primitive
AF-algebra A such that Mloc(Mloc(A)) 6= Mloc(A)

2008 Ara–Mathieu A = C (X )⊗ B(H), certain X

2009 Argerami–Farenick–Massey A = C [0, 1]⊗ K (H)

common features of last two:

A ⊆ Mloc(A) ⊆ Mloc(Mloc(A)) ⊆ . . . ⊆ I (A), the injective
envelope
formulas for Mloc(A) and I (A)

Martin Mathieu (Queen’s University Belfast)

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology



Introduction History New Results

1978 Pedersen introduces Mloc(A)

2003 Ara–Mathieu book gives comprehensive account

2006 Ara–Mathieu provide unital, separable, primitive
AF-algebra A such that Mloc(Mloc(A)) 6= Mloc(A)

2008 Ara–Mathieu A = C (X )⊗ B(H), certain X

2009 Argerami–Farenick–Massey A = C [0, 1]⊗ K (H)

common features of last two:

A ⊆ Mloc(A) ⊆ Mloc(Mloc(A)) ⊆ . . . ⊆ I (A), the injective
envelope
formulas for Mloc(A) and I (A)

Martin Mathieu (Queen’s University Belfast)

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology



Introduction History New Results

A commutative:

Mloc(A) = lim−→U∈D Cb(U) = alg lim
−→ T∈T Cb(T ) = I (A),

where D dense open; T dense Gδ subsets of Prim(A).

Hence Mloc(Mloc(A)) = Mloc(I (A)) = I (A) = Mloc(A)

since I (A) is an AW*-algebra.
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A non-commutative, e.g., A = C (X ,B(H)):

Mloc(A) = lim−→U∈D Cb(U,B(H)β)

⊆ alg lim
−→ T∈T Cb(T ,B(H)β) = I (A),

where D dense open; T dense Gδ subsets of Stonean space X .

Depending on properties of X , ⊆ can be strict and still
Mloc(Mloc(A)) = I (A)!
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Introduction History New Results

1978 Pedersen introduces Mloc(A)

2003 Ara–Mathieu book gives comprehensive account

2006 Ara–Mathieu provide first A with Mloc(Mloc(A)) 6= Mloc(A)

2008 Ara–Mathieu A = C (X )⊗ B(H), certain X

2009 Argerami–Farenick–Massey A = C [0, 1]⊗ K (H)
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1978 Pedersen introduces Mloc(A)

1991 Ara–Mathieu obtain local Dauns–Hofmann theorem

Z (Mloc(A)) = lim−→ I∈Ice(A)
Z (M(I )) and hence

Z (Mloc(Mloc(A))) = Z (Mloc(A)) for every A.

2003 Ara–Mathieu book gives comprehensive account

2006 Ara–Mathieu provide first A with Mloc(Mloc(A)) 6= Mloc(A)

2008 Ara–Mathieu A = C (X )⊗ B(H), certain X

2009 Argerami–Farenick–Massey A = C [0, 1]⊗ K (H)
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2003 Ara–Mathieu book gives comprehensive account
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1991 Ara–Mathieu obtain

Z (Mloc(Mloc(A))) = Z (Mloc(A)) for every A

1999 Ara–Mathieu find example of unital, non-simple C*-algebra A
such that Mloc(A) is simple (so, Mloc(Mloc(A)) = Mloc(A))

2000 Somerset proves Mloc(Mloc(A)) = Mloc(A) for A unital,
separable with dense Gδ subset of closed points in Prim(A)

2003 Ara–Mathieu book gives comprehensive account

2006 Ara–Mathieu provide first A with Mloc(Mloc(A)) 6= Mloc(A)

2008 Ara–Mathieu A = C (X )⊗ B(H), certain X

2009 Argerami–Farenick–Massey A = C [0, 1]⊗ K (H)

2011 Ara–Mathieu provide comprehensive explanation and general
procedure to produce examples as well as positive cases
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Main Theorem

Theorem

Let B and C be separable C*-algebras and suppose that at least
one of them is nuclear. Suppose further that B is simple and
non-unital and that Prim(C ) contains a dense Gδ subset
consisting of closed points. Let A = C ⊗ B. Then

Mloc(A) = Mloc(Mloc(A))

if and only if Prim(A) contains a dense subset of isolated points.
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Consequence

Corollary

Let X be a perfect, second countable, locally compact Hausdorff
space. Let A = C0(X )⊗ B for some non-unital separable simple
C*-algebra B. Then Mloc(A) 6= Mloc(Mloc(A)).
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Introduction History New Results

Consequence

Corollary

Let X be a perfect, second countable, locally compact Hausdorff
space. Let A = C0(X )⊗ B for some non-unital separable simple
C*-algebra B. Then Mloc(A) 6= Mloc(Mloc(A)).

Thus it is easy to answer Pedersen’s question in the
negative!
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Outline of proof

“if” part:

Let X = Prim(A), X1 the set of isolated points in X and
X2 = X \ X1. Then X1 and X2 are open subsets of X with
corresponding closed ideals I1 = A(X1) and I2 = A(X2) of A.
If X1 is dense, I1 is the minimal essential closed ideal of A so
Mloc(A) = M(I1). It follows that

Mloc(Mloc(A)) = Mloc(M(I1)) = Mloc(I1) = Mloc(A).
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Outline of proof

“only if” part:

In the general case, Mloc(A) = Mloc(I1)⊕Mloc(I2).
If X2 6= ∅, it contains a dense Gδ subset of closed points and so
I2 = C (X2)⊗ B while X2 is a perfect space. It follows that

Mloc(Mloc(A)) = Mloc(Mloc(I1)⊕Mloc(I2))

= Mloc(Mloc(I1))⊕Mloc(Mloc(I2))

hence it suffices to show that Mloc(I2) 6= Mloc(Mloc(I2)) or, in
other words, we can assume that X is perfect.
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Outline of proof

the main part of the proof of the “only if” direction uses a
combination of algebraic results on the ideal structure
of Mloc(A) and a careful study of the topological properties
of Prim(A) together with the monotone completeness of I (A);

Martin Mathieu (Queen’s University Belfast)

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology



Introduction History New Results

Outline of proof

the main part of the proof of the “only if” direction uses a
combination of algebraic results on the ideal structure
of Mloc(A) and a careful study of the topological properties
of Prim(A) together with the monotone completeness of I (A);

What happens in the unital case?

Martin Mathieu (Queen’s University Belfast)

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology



Introduction History New Results

A dichotomy answer to Pedersen’s question

X perfect compact metric space

B separable simple (nuclear) C*-algebra

(Elliott’s programme)

=⇒
A = C (X )⊗ B

B unital B non-unital

Mloc(Mloc(A)) = Mloc(A) Mloc(Mloc(A)) 6= Mloc(A)
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Outline of proof of Main Theorem

A separable C*-algebra such that Prim(A) contains a dense Gδ
subset consisting of closed points

Lemma 2

If KI = KA for all I ∈ Ice(A) then Mloc(KA) = M(KA).

Lemma 3

Let y ∈ I (A). If ya ∈ KA for all a ∈ A then y ∈ M(KA).

Proposition

M
(3)
loc (A) = M

(2)
loc (A) = M(KA).
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Outline of proof of Main Theorem

A separable C*-algebra such that Prim(A) contains a dense Gδ
subset consisting of closed points

Definition

KA is the closure of the set of all elements of the
form

∑
n∈N anzn, where {an} ⊆ A is a bounded family

and {zn} ⊆ Z = Z (Mloc(A)) consists of mutually orthogonal
projections.

Lemma 1

KA is an essential ideal in Mloc(A).Lemma 2
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Outline of proof

now, A = C ⊗ B as in the Theorem, such that Prim(A) contains a
dense Gδ subset consisting of closed points and Prim(A) is perfect
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Outline of proof

now, A = C ⊗ B as in the Theorem, such that Prim(A) contains a
dense Gδ subset consisting of closed points and Prim(A) is perfect

aim: to find q ∈ M(KA) \Mloc(A)

Martin Mathieu (Queen’s University Belfast)

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology



Introduction History New Results

Outline of proof

now, A = C ⊗ B as in the Theorem, such that Prim(A) contains a
dense Gδ subset consisting of closed points and Prim(A) is perfect

aim: to find q ∈ M(KA) \Mloc(A)

recall: t ∈ Prim(A) is separated if t and every
point t ′ /∈ {t} can be separated by disjoint neighbourhoods.

Dixmier 1968 Sep(A), the set of all separated points, dense
Gδ subset of Prim(A) as well as a Polish space;
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Outline of proof

now, A = C ⊗ B as in the Theorem, such that Prim(A) contains a
dense Gδ subset consisting of closed points and Prim(A) is perfect

aim: to find q ∈ M(KA) \Mloc(A)

recall: t ∈ Prim(A) is separated if t and every
point t ′ /∈ {t} can be separated by disjoint neighbourhoods.

Dixmier 1968 Sep(A), the set of all separated points, dense
Gδ subset of Prim(A) as well as a Polish space;

put X = Prim(A) = Prim(C ); then
∃ dense Gδ subset S ⊆ X consisting of closed separated points
which is a Polish space;
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Outline of proof

now, A = C ⊗ B as in the Theorem, such that Prim(A) contains a
dense Gδ subset consisting of closed points and Prim(A) is perfect

aim: to find q ∈ M(KA) \Mloc(A)

recall: t ∈ Prim(A) is separated if t and every
point t ′ /∈ {t} can be separated by disjoint neighbourhoods.

Dixmier 1968 Sep(A), the set of all separated points, dense
Gδ subset of Prim(A) as well as a Polish space;

put X = Prim(A) = Prim(C ); then
∃ dense Gδ subset S ⊆ X consisting of closed separated points
which is a Polish space;

S perfect, metrisable =⇒ S not extremally disconnected.
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Outline of proof

a topological lemma working in the background:

Lemma

Let X be a topological space, and let G ⊆ X be a dense subset
consisting of closed points.

(i) If X is perfect then G is perfect (in itself).

(ii) For each V ⊆ X open, V ∩ G = V ∩ G
G

, where G denotes
the closure relative to G .

(iii) For each V ⊆ X open, ∂
(
V ∩ G

G)
= ∂V ∩ G .

Martin Mathieu (Queen’s University Belfast)

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology



Introduction History New Results

Outline of proof

Consequence:
every non-empty open subset of S contains an open subset which
has non-empty boundary;
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Outline of proof

Consequence:
every non-empty open subset of S contains an open subset which
has non-empty boundary;

let {V ′n | n ∈ N} be a countable basis for the topology of X ;
for each n ∈ N, choose an open subset Vn ⊆ X such that
Vn ∩ S ⊆ V ′n ∩ S not open;
put Wn = X \ Vn; then On = Vn ∪Wn is dense open.

Martin Mathieu (Queen’s University Belfast)

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology



Introduction History New Results

Outline of proof

Consequence:
every non-empty open subset of S contains an open subset which
has non-empty boundary;

let {V ′n | n ∈ N} be a countable basis for the topology of X ;
for each n ∈ N, choose an open subset Vn ⊆ X such that
Vn ∩ S ⊆ V ′n ∩ S not open;
put Wn = X \ Vn; then On = Vn ∪Wn is dense open.

let zn, n ∈ N denote the equivalence class
of χVn ⊗ 1 ∈ Z

(
M(C (On)⊗ B)

)
in Z = Z (Mloc(A));
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Outline of proof

Consequence:
every non-empty open subset of S contains an open subset which
has non-empty boundary;

let {V ′n | n ∈ N} be a countable basis for the topology of X ;
for each n ∈ N, choose an open subset Vn ⊆ X such that
Vn ∩ S ⊆ V ′n ∩ S not open;
put Wn = X \ Vn; then On = Vn ∪Wn is dense open.

let zn, n ∈ N denote the equivalence class
of χVn ⊗ 1 ∈ Z

(
M(C (On)⊗ B)

)
in Z = Z (Mloc(A));

let (en)n∈N be a strictly increasing approximate identity of B
with enen+1 = en and ‖en+1 − en‖ = 1 for all n;

put p1 = e1, pn = en − en−1 for n ≥ 2;
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Outline of proof

setting qn =
∑n

j=1 zj ⊗ p2j , n ∈ N, we obtain an increasing
sequence (qn)n∈N in Mloc(A)+ bounded by 1.

I (A) monotone complete =⇒
q = supn qn =

∑∞
n=1 zn ⊗ p2n exists in I (A)+ and has norm 1.
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Introduction History New Results

Outline of proof

setting qn =
∑n

j=1 zj ⊗ p2j , n ∈ N, we obtain an increasing
sequence (qn)n∈N in Mloc(A)+ bounded by 1.

I (A) monotone complete =⇒
q = supn qn =

∑∞
n=1 zn ⊗ p2n exists in I (A)+ and has norm 1.

It remains to show

(a) q ∈ M(KA);

(b) q /∈ Mloc(A).
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Introduction History New Results

Outline of proof

setting qn =
∑n

j=1 zj ⊗ p2j , n ∈ N, we obtain an increasing
sequence (qn)n∈N in Mloc(A)+ bounded by 1.

I (A) monotone complete =⇒
q = supn qn =

∑∞
n=1 zn ⊗ p2n exists in I (A)+ and has norm 1.

towards (a) note that A separable =⇒ cA = AZ (“bounded cen-
tral closure”) contains strictly positive element (related to (en)∈N);

Martin Mathieu (Queen’s University Belfast)

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology



Introduction History New Results

Outline of proof

setting qn =
∑n

j=1 zj ⊗ p2j , n ∈ N, we obtain an increasing
sequence (qn)n∈N in Mloc(A)+ bounded by 1.

I (A) monotone complete =⇒
q = supn qn =

∑∞
n=1 zn ⊗ p2n exists in I (A)+ and has norm 1.

towards (a) note that A separable =⇒ cA = AZ (“bounded cen-
tral closure”) contains strictly positive element (related to (en)∈N);
use this to show that (qn)n∈N is a Cauchy sequence in M(cA)β;
essential

p2jek = (e2j − e2j−1)ek = 0 if 2j > k + 1.
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Introduction History New Results

Outline of proof

setting qn =
∑n

j=1 zj ⊗ p2j , n ∈ N, we obtain an increasing
sequence (qn)n∈N in Mloc(A)+ bounded by 1.

I (A) monotone complete =⇒
q = supn qn =

∑∞
n=1 zn ⊗ p2n exists in I (A)+ and has norm 1.

towards (a) note that A separable =⇒ cA = AZ (“bounded cen-
tral closure”) contains strictly positive element (related to (en)∈N);
use this to show that (qn)n∈N is a Cauchy sequence in M(cA)β;
essential

p2jek = (e2j − e2j−1)ek = 0 if 2j > k + 1.

let q̃ = limn→∞ qn ∈ M(cA)β and show that q̃ = q using various
properties of I (A);
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Introduction History New Results

Outline of proof

setting qn =
∑n

j=1 zj ⊗ p2j , n ∈ N, we obtain an increasing
sequence (qn)n∈N in Mloc(A)+ bounded by 1.

I (A) monotone complete =⇒
q = supn qn =

∑∞
n=1 zn ⊗ p2n exists in I (A)+ and has norm 1.

towards (a) note that A separable =⇒ cA = AZ (“bounded cen-
tral closure”) contains strictly positive element (related to (en)∈N);
use this to show that (qn)n∈N is a Cauchy sequence in M(cA)β;
essential

p2jek = (e2j − e2j−1)ek = 0 if 2j > k + 1.

let q̃ = limn→∞ qn ∈ M(cA)β and show that q̃ = q using various
properties of I (A);
=⇒ ∀ a ∈ A, qa ∈ cA ⊆ KA =⇒ q ∈ M(KA) by Lemma 3.
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Introduction History New Results

Outline of proof

I (A) monotone complete =⇒
q = supn qn =

∑∞
n=1 zn ⊗ p2n exists in I (A)+ and has norm 1.

towards (b) assume that q ∈ Mloc(A); hence

∀ 0 < ε < 1/4 ∃ U ⊆ X dense open, m ∈ M(A(U))+,1 : ‖m−q‖ < ε.
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Introduction History New Results

Outline of proof

I (A) monotone complete =⇒
q = supn qn =

∑∞
n=1 zn ⊗ p2n exists in I (A)+ and has norm 1.

towards (b) assume that q ∈ Mloc(A); hence

∀ 0 < ε < 1/4 ∃ U ⊆ X dense open, m ∈ M(A(U))+,1 : ‖m−q‖ < ε.

take n ∈ N with V ′n ⊆ U and choose t0 ∈ ∂Vn ∩ S ⊆ U ∩ S ;

since t0 can be approximated from ‘inside’ and ‘outside’ of Vn

and since S consists of separated points, the function f (t) =
‖ama + t‖, t ∈ U is continuous (some well-chosen a ∈ A(U))

and attains both a value > 1/2 and < 1/2 at t0, since∣∣f (t)− χVn(t)
∣∣ ≤ ‖m − q‖+ ε < 2 ε;
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Introduction History New Results

Outline of proof

I (A) monotone complete =⇒
q = supn qn =

∑∞
n=1 zn ⊗ p2n exists in I (A)+ and has norm 1.

towards (b) assume that q ∈ Mloc(A); hence

∀ 0 < ε < 1/4 ∃ U ⊆ X dense open, m ∈ M(A(U))+,1 : ‖m−q‖ < ε.

take n ∈ N with V ′n ⊆ U and choose t0 ∈ ∂Vn ∩ S ⊆ U ∩ S ;

since t0 can be approximated from ‘inside’ and ‘outside’ of Vn

and since S consists of separated points, the function f (t) =
‖ama + t‖, t ∈ U is continuous (some well-chosen a ∈ A(U))

and attains both a value > 1/2 and < 1/2 at t0, since∣∣f (t)− χVn(t)
∣∣ ≤ ‖m − q‖+ ε < 2 ε;

Contradiction!
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New Formulas for Mloc(A) and I (A)

A C*-algebra

Mloc(A) = alg lim
−→ T∈T Γb(T ,AMA

)

I (A) = alg lim
−→ T∈T Γb(T ,AIA)

where AMA
and AIA are the upper semicontinuous C*-bundles

associated to the multiplier sheaf MA and the injective envelope
sheaf IA of A, respectively;

T is the downwards directed family of dense Gδ subsets of Prim(A);

Γb(T ,−) denotes the bounded continuous local sections on T .

P. Ara, M. Mathieu, Sheaves of C*-algebras, Math. Nachrichten 283 (2010), 21–39.
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Introduction History New Results

New Formulas for Mloc(A) and I (A)

A C*-algebra

Mloc(A) = alg lim
−→ T∈T Γb(T ,AMA

)

I (A) = alg lim
−→ T∈T Γb(T ,AIA)

these descriptions are compatible: AMA
↪→ AIA

Consequence:

y ∈ Mloc(Mloc(A)) ⊆ I (A) is contained in some C*-subalgebra
Γb(T ,AIA) and will belong to Mloc(A) once we find T ′ ⊆ T ,
T ′ ∈ T such that y ∈ Γb(T ′,AMA

).

P. Ara, M. Mathieu, Sheaves of C*-algebras, Math. Nachrichten 283 (2010), 21–39.
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to be continued . . .
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