Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology

Martin Mathieu

(Queen's University Belfast)

Shiraz, 28 April 2017

Partially supported by UK Engineering and Physical Sciences Research Council Grant No. EP/M02461X/1.

Martin Mathieu

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology

(Queen's University Belfast)

Image: A math a math

Part V: Towards sheaf cohomology

Martin Mathieu

(Queen's University Belfast)

э

(日) (四) (日) (日) (日)

A key property in abelian categories

in an abelian category,

• the morphism set between any pair of objects is an abelian group;

Martin Mathieu

(Queen's University Belfast)

(ロ) (回) (E) (E)

A key property in abelian categories

in an abelian category,

- the morphism set between any pair of objects is an abelian group;
- every morphism has a kernel and a cokernel;

Martin Mathieu

(Queen's University Belfast)

(ロ) (回) (E) (E)

A key property in abelian categories

in an abelian category,

- the morphism set between any pair of objects is an abelian group;
- every morphism has a kernel and a cokernel;
- every morphism can be uniquely factorised as

where π is an epimorphism and μ is a monomorphism.

Martin Mathieu

(Queen's University Belfast)

A replacement for the key property

to make up for the missing third property in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$, we introduce an exact structure.

Martin Mathieu

(Queen's University Belfast)

・ロッ ・回 ・ ・ ヨッ ・

Kernels in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$

Definition

Let
$$\varphi \in CB_{\mathfrak{A}}(\mathfrak{E},\mathfrak{F})$$
 for some $\mathfrak{E}, \mathfrak{F} \in \mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$. For each $U \in \mathcal{O}_X$, we set $(\operatorname{Ker} \varphi)(U) = \operatorname{ker} \varphi_U$.

Since $T_{VU} \ker \varphi_U \subseteq \ker \varphi_V$ whenever $V \subseteq U$, we can restrict the connecting morphisms T_{VU} in \mathfrak{E} to connecting morphisms $\ker \varphi_U \rightarrow \ker \varphi_V$. In this way, we obtain a sub-presheaf $\ker \varphi$ of \mathfrak{E} which is easily checked to be a sheaf.

We will call this the *sheaf kernel* or simply the *kernel* of φ .

(日) (同) (三) (三)

Cokernels in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$

Definition

Let $\varphi \in CB_{\mathfrak{A}}(\mathfrak{E},\mathfrak{F})$ for some $\mathfrak{E},\mathfrak{F} \in \mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$. For each $U \in \mathcal{O}_X$, we set $(\operatorname{PCoker} \varphi)(U) = \operatorname{coker} \varphi_U$. Recall that $\operatorname{coker} \varphi_U = \mathfrak{F}(U) / \operatorname{im} \varphi_U$ by definition.

Since S_{VU} im $\varphi_U \subseteq \text{im } \varphi_V$ whenever $V \subseteq U$, the connecting morphisms S_{VU} in \mathfrak{F} induce connecting morphisms coker $\varphi_U \rightarrow \text{coker } \varphi_V$. In this way, we obtain a presheaf PCoker φ , called the *presheaf cokernel* of φ .

Since this is in general not a sheaf, we define the *sheaf cokernel* or simply the *cokernel* of φ as the sheafification of PCoker φ : Coker $\varphi = (PCoker \varphi)^{\sim}$.

Martin Mathieu

(日) (同) (三) (

Kernels and cokernels in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$

Remarks

- The canonical embedding ι: Ker φ → 𝔅 is in fact a monomorphism in OMod¹_A(X) since each ι_U is a complete isometry.
- The canonical quotient morphism $\pi: \mathfrak{F} \to \mathsf{PCoker}\,\varphi$ is in fact an epimorphism in $\mathcal{OMod}^1_{\mathfrak{A}}(X)$ since each π_U is a completely contractive complete quotient mapping.

Letting $\tilde{\pi}: \mathfrak{F} \to \operatorname{Coker} \varphi$ be given by $\tilde{\pi}_U = \eta_U \pi_U$, $U \in \mathcal{O}_X$, where η is the sheafification transformation, we have $\|\tilde{\pi}\|_{cb} \leq 1$, since $\|\tilde{\pi}_U\|_{cb} \leq \|\eta_U\|_{cb} \|\pi_U\|_{cb}$ for all $U \in \mathcal{O}_X$.

Martin Mathieu

(Queen's University Belfast)

< ロ > < 同 > < 三 > < 三

Kernels and cokernels in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$

Theorem

Let X be a topological space and let \mathfrak{A} be a sheaf of C*-algebras on X. Let $\mathfrak{E}, \mathfrak{F} \in \mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$. For each $\varphi \in CB_{\mathfrak{A}}(\mathfrak{E}, \mathfrak{F})$, Ker φ is a kernel in the category $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$ and Coker φ is a cokernel in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$. In particular, the morphisms ι and $\tilde{\pi}$ defined above are a monomorphism and an epimorphism, respectively in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$.

Martin Mathieu

(Queen's University Belfast)

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3.5

A glimpse into the proof

Martin Mathieu

Queen's University Belfast

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A kernel

Let $f \in Mor_{\mathscr{C}}(A, B)$ for some $A, B \in \mathscr{C}$.

A morphism $i: K \to A$ is a *kernel* of f if fi = 0 and for each $D \in \mathscr{C}$ and $g \in Mor_{\mathscr{C}}(D, A)$ with fg = 0 there is a unique $h \in Mor_{\mathscr{C}}(D, K)$ making the diagram below commutative

Any kernel is a monomorphism and is, up to isomorphism, unique.

Martin Mathieu

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology

(Queen's University Belfast)

< (17) > <

A cokernel

Let $f \in Mor_{\mathscr{C}}(A, B)$ for some $A, B \in \mathscr{C}$.

A morphism $p: B \to C$ is a *cokernel* of f if pf = 0 and for each $D \in \mathscr{C}$ and $g \in Mor_{\mathscr{C}}(B, D)$ with gf = 0 there is a unique $h \in Mor_{\mathscr{C}}(C, D)$ making the diagram below commutative

Any cokernel is an epimorphism and is, up to isomorphism, unique.

Image: A math a math

Kernels and cokernels in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$

Fact.

Let \mathscr{C} be a category with the property that *every* morphism has both a kernel and a cokernel (which is the case in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$ and in $\mathcal{OMod}_{\mathfrak{A}}^{1}(X)$).

Then a morphism which is a kernel necessarily is the kernel of its cokernel, and a morphism which is a cokernel necessarily is the cokernel of its kernel.

let \mathscr{C} be an additive category;

Aartin Mathieu

(Queen's University Belfast)

æ

< ロ > < 回 > < 回 > < 回 > < 回 >

let \mathscr{C} be an additive category;

if ${\mathscr C}$ is abelian

every monomorphism is a kernel and every epimorphism is a cokernel;

Martin Mathieu

(Queen's University Belfast)

・ロッ ・回 ・ ・ ヨッ ・

let \mathscr{C} be an additive category;

in general, a monomorphism which is a kernel is called admissible

and an epimorphism which is a cokernel is called admissible

E —*≫F*

A kernel-cokernel pair (M, P) consists of two composable morphisms in \mathscr{C} such that M = Ker P and P = Coker M,

$$E_1 \xrightarrow{M} E_2 \xrightarrow{P} E_3$$

where $E_i \in \mathscr{C}$.

Martin Mathieu

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology

(Queen's University Belfast)

< ロ > < 同 > < 回 > < 回

An *exact structure* on an additive category \mathscr{C} is a class of kernel–cokernel pairs, closed under isomorphisms, such that the following axioms are satisfied.

[E0] $\forall E \in \mathscr{C} : 1_E$ is an admissible monomorphism;

 $[\mathsf{E0}^{\mathsf{op}}] \forall E \in \mathscr{C} : 1_E$ is an admissible epimorphism;

[E1] the class of admissible monomorphisms is closed under composition;

[E1^{op}] the class of admissible epimorphisms is closed under composition;

[E2] the push-out of an admissible monomorphism along an arbitrary morphism exists and yields an admissible monomorphism;

[E2^{op}] the pull-back of an admissible epimorphism along an arbitrary morphism exists and yields an admissible epimorphism.

Martin Mathieu

(Queen's University Belfast)

・ロト ・回 ・ ・ ヨト ・ ヨ ・

Definition

Let X be a topological space and let \mathfrak{A} be a sheaf of C*-algebras on X. Let $\mathscr{E}x_{\mathfrak{A}}(X)$ denote the collection of all kernel–cokernels pairs in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$

$$\mathfrak{E}_1 \xrightarrow{\mu} \mathfrak{E}_2 \xrightarrow{\varpi} \mathfrak{E}_3$$
.

We call this the *canonical exact structure* on $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$.

Martin Mathieu

(Queen's University Belfast)

Image: A math a math

Definition

Let X be a topological space and let \mathfrak{A} be a sheaf of C*-algebras on X. Let $\mathscr{E}x_{\mathfrak{A}}(X)$ denote the collection of all kernel–cokernels pairs in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$

$$\mathfrak{E}_1 \xrightarrow{\mu} \mathfrak{E}_2 \xrightarrow{\varpi} \mathfrak{E}_3$$
.

We call this the *canonical exact structure* on $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$.

Theorem

The class $\mathscr{C}x_{\mathfrak{A}}(X)$ of all kernel–cokernel pairs defines an exact structure on $\mathscr{OMod}_{\mathfrak{A}}^{\infty}(X)$.

Martin Mathieu

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology

(Queen's University Belfast)

(日) (同) (三) (

Remarks

1. $\mathscr{E}x_{\mathfrak{A}}(X)$ is the largest exact structure on $\mathscr{OMod}_{\mathfrak{A}}^{\infty}(X)$.

Martin Mathieu

(Queen's University Belfast)

(ロ) (回) (E) (E)

Remarks

- 1. $\mathscr{E}x_{\mathfrak{A}}(X)$ is the largest exact structure on $\mathscr{OMod}_{\mathfrak{A}}^{\infty}(X)$.
- 2. Axioms [E0] and [E0^{op}] are easily verified.

Martin Mathieu

(Queen's University Belfast)

(ロ) (回) (E) (E)

An exact structure on $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$

Remarks

3. Given a kernel–cokernel pair (μ, ϖ) in $\mathscr{E}x_{\mathfrak{A}}(X)$ we obtain an isomorphic pair $(\iota, \tilde{\pi})$

For each $U \in \mathscr{O}_X$, we get an exact sequence in $\mathscr{OMod}^1_{\mathfrak{A}(U)}$

$$0 \longrightarrow \ker \pi_U \xrightarrow{\iota_U} \mathfrak{E}_2(U) \xrightarrow{\pi_U} \operatorname{coker} \iota_U \longrightarrow 0$$

where coker $\iota_U = \mathfrak{E}_2(U)/\operatorname{im} \iota_U$ since ι_U is a complete isometry.

Martin Mathieu

(Queen's University Belfast)

(日) (同) (三) (

Characterising kernels in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$

Proposition

Let $\mu \in CB_{\mathfrak{A}}(\mathfrak{E},\mathfrak{F})$ for some $\mathfrak{E}, \mathfrak{F} \in \mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$ and let $\tilde{\pi} : \mathfrak{F} \to \operatorname{Coker} \mu$. Then μ is a kernel in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$ if and only if, for each $t \in X$, (μ_t, π_t) is a kernel-cokernel pair in $\mathcal{OMod}_{\mathsf{A}_t}^{\infty}$ with $\operatorname{im} \mu_t^0 = \operatorname{ker} \pi_t^0$ and $\sup_{t \in X} \|\mu_t^{-1}\|_{cb} < \infty$.

Martin Mathieu

(Queen's University Belfast)

< 17 ▶

Characterising cokernels in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$

Proposition

Let $\varpi \in CB_{\mathfrak{A}}(\mathfrak{F}, \mathfrak{G})$ for some $\mathfrak{F}, \mathfrak{G} \in \mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$. Then ϖ is a cokernel in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$ if and only if, for each $t \in X$, ϖ_t^0 is completely open onto G_t^0 and $\sup_{t \in X} \|\varpi_t^{-1}\|_{cb} < \infty$.

Martin Mathieu

(Queen's University Belfast)

Image: Image:

The isomorphisms in $\mathcal{OMod}^{\infty}_{\mathfrak{A}}(X)$

Theorem

Let $\varphi \in CB_{\mathfrak{A}}(\mathfrak{E},\mathfrak{F})$ for some $\mathfrak{E}, \mathfrak{F} \in \mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$. Then the following conditions are equivalent.

- (a) φ is an isomorphism;
- (b) φ_U is an isomorphism in $\mathcal{OMod}_{\mathfrak{A}(U)}^{\infty}$ for each $U \in \mathcal{O}_X$ and $\sup_{U \in \mathcal{O}_X} \|\varphi_U^{-1}\|_{cb} < \infty;$
- (c) φ_t is an isomorphism in $\mathcal{OMod}_{A_t}^{\infty}$ for each $t \in X$, $\sup_{t \in X} \|\varphi_t^{-1}\|_{cb} < \infty$ and φ_t^0 is surjective for each $t \in X$.

here, $\varphi_t^0 \colon \mathsf{E}_t^0 \to \mathsf{F}_t^0$ is the restriction of φ_t to the *uncompleted directed colimit*.

Martin Mathieu

(Queen's University Belfast)

• • • • • • • • • • • • •

We need to consider the following commutative diagram.

where $t \in X$ is fixed and $V, U \in \mathscr{U}_t, V \subseteq U$. Moreover, $T_U: \mathfrak{E}(U) \to \mathsf{E}_t$ denotes the canonical morphism into the stalk E_t at t and $\mathsf{E}_t^0 = \bigcup_{U \in \mathscr{U}_t} T_U \mathfrak{E}(U)$, the *uncompleted directed colimit*, which is dense in E_t .

Martin Mathieu

(Queen's University Belfast)

・ロト ・日下 ・ 日下

Lemma (Axiom [E1])

Let (μ, ϖ) and (μ', ϖ') be two kernel-cokernel pairs in $\mathscr{E}x_{\mathfrak{A}}(X)$. Suppose that μ and μ' are composable so that we have the commutative diagram

Then $\mu\mu'$ is an admissible monomorphism in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$.

Martin Mathieu

(Queen's University Belfast)

3

Lemma (Axiom [E1^{op}])

Let (μ, ϖ) and (μ', ϖ') be two kernel-cokernel pairs in $\mathscr{E}x_{\mathfrak{A}}(X)$. Suppose that ϖ and ϖ' are composable so that we have the commutative diagram

Then $\varpi' \varpi$ is an admissible epimorphism in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$.

Martin Mathieu

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology

(Queen's University Belfast)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proposition

Let \mathfrak{E} , \mathfrak{F} and $\mathfrak{G} \in \mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$ and $\tau \in CB_{\mathfrak{A}}(\mathfrak{F}, \mathfrak{G})$, $\rho \in CB_{\mathfrak{A}}(\mathfrak{E}, \mathfrak{G})$ be given. Then the pullback of ρ along τ exists and in the pullback diagram

we have, for each $U \in \mathcal{O}_X$, $(\mathfrak{E} \times_{\mathfrak{G}} \mathfrak{F})(U) = \mathfrak{E}(U) \times_{\mathfrak{G}(U)} \mathfrak{F}(U)$ $= \{(x, y) \in \mathfrak{E}(U) \times \mathfrak{F}(U) \mid \rho_U(x) = \tau_U(y)\}$ and $\overline{\tau}_U(x, y) = x$, $\overline{\rho}_U(x, y) = y$ for all (x, y). Moreover, for each $t \in X$, $(\mathfrak{E} \times_{\mathfrak{G}} \mathfrak{F})_t^0 = \mathsf{E}_t^0 \times_{\mathsf{G}_t^0} \mathsf{F}_t^0$.

Martin Mathieu

(Queen's University Belfast)

Image: A mathematical states and a mathem

Proposition

Let \mathfrak{E} , \mathfrak{F} , $\mathfrak{G} \in \mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$ and let $\rho \in CB_{\mathfrak{A}}(\mathfrak{G}, \mathfrak{E})$ and $\sigma \in CB_{\mathfrak{A}}(\mathfrak{G}, \mathfrak{F})$ be given. Then the pushout of σ along ρ exists in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$:

$$e(U) \xrightarrow{\rho_{U}} \mathfrak{E}(U) \xrightarrow{\overline{\sigma}_{U}} \mathfrak{E}(U) \xrightarrow{\overline{\sigma}_{U}} \mathfrak{E}(U) \oplus_{\mathfrak{S}(U)} \mathfrak{F}(U)$$
where $\mathfrak{E}(U) \oplus_{\mathfrak{S}(U)} \mathfrak{F}(U) = (\mathfrak{E}(U) \oplus \mathfrak{F}(U)) / \mathfrak{H}(U)$ with
$$\mathfrak{H}(U) = \overline{\{(\rho_{U}(z), -\sigma_{U}(z)) \mid z \in \mathfrak{E}(U)\}}.$$

Martin Mathieu

w

(Queen's University Belfast)

Proposition

Let \mathfrak{E} , \mathfrak{F} , $\mathfrak{G} \in \mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$ and let $\rho \in CB_{\mathfrak{A}}(\mathfrak{G}, \mathfrak{E})$ and $\sigma \in CB_{\mathfrak{A}}(\mathfrak{G}, \mathfrak{F})$ be given. Then the pushout of σ along ρ exists in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$:

where $E_t \oplus_{G_t} F_t = (E_t \oplus F_t) / H_t$ with $H_t = \overline{\{(\rho_t(z), -\sigma_t(z)) \mid z \in H_t\}}$

and $\bar{\sigma}_t(x) = (x, 0) + H_t$, $x \in E_t$, $\bar{\rho}_t(y) = (0, y) + H_t$, $y \in F_t$.

Martin Mathieu

(Queen's University Belfast)

Lemma (Axiom [E2])

The pushout of an admissible monomorphism in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$ is an admissible monomorphism.

Lemma (Axiom [E2^{op}])

The pullback of an admissible epimorphism in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$ is an admissible epimorphism.

Martin Mathieu

(Queen's University Belfast)

(日) (同) (三) (

$\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$ is exact.

Theorem

The class $\mathscr{C}x_{\mathfrak{A}}(X)$ of all kernel–cokernel pairs defines an exact structure on $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$.

Martin Mathieu

(Queen's University Belfast)

・ロン ・回 と ・ ヨン・

in $\mathscr{E}x_{\mathfrak{A}}(X)$, every kernel–cokernel pair

$$\mathfrak{E}_1 \xrightarrow{\mu} \mathfrak{E}_2 \xrightarrow{\varpi} \mathfrak{E}_3$$

where $\mathfrak{E}_i \in \mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$ is called a short exact sequence.

Martin Mathieu

(Queen's University Belfast)

・ロト ・回ト ・ヨト

in $\mathscr{E}x_{\mathfrak{A}}(X)$, every kernel–cokernel pair

$$\mathfrak{E}_1 \xrightarrow{\mu} \mathfrak{E}_2 \xrightarrow{\varpi} \mathfrak{E}_3$$

where $\mathfrak{E}_i \in \mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$ is called a short exact sequence. In order to define general exact sequences we first introduce the concept of an admissible morphism.

Martin Mathieu

(Queen's University Belfast)

Image: A math a math

in $\mathscr{E}x_{\mathfrak{A}}(X)$, every kernel–cokernel pair

$$\mathfrak{E}_1 \xrightarrow{\mu} \mathfrak{E}_2 \xrightarrow{\varpi} \mathfrak{E}_3$$

where $\mathfrak{E}_i \in \mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$ is called a short exact sequence.

Definition

The morphism $\varphi \in CB_{\mathfrak{A}}(\mathfrak{E},\mathfrak{F}), \mathfrak{E}, \mathfrak{F} \in \mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$ is called *admissible* if it can be factorised as

for some admissible monomorphism μ and some admissible epimorphism ϖ in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$.

Martin Mathieu

∢ □ ▶ ∢ ঐ ▶ ∢ ই ▶ ব ই ▶ টে প Queen's University Belfast)

Definition

A sequence of admissible morphisms in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$

is said to be *exact* if the short sequence $\mathfrak{G}_1 \xrightarrow{\mu_1} \mathfrak{E}_2 \xrightarrow{\varpi_2} \mathfrak{G}_2$ is exact. An arbitrary sequence of admissible morphisms in $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$ is *exact* if the sequences given by any two consecutive morphisms are exact.

Martin Mathieu

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology

(Queen's University Belfast)

Image: A math a math

Theorem

Let $\varphi \in CB_{\mathfrak{A}}(\mathfrak{E},\mathfrak{F})$ for some $\mathfrak{E},\mathfrak{F} \in \mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$. Then φ is admissible if and only if, for each $t \in X$,

- $\varphi_t \in CB_{A_t}(E_t, F_t)$ is admissible;
- $\hat{\varphi}_t^0$ is surjective;
- $(\operatorname{Ker} \varphi)_t = \operatorname{ker} \varphi_t$, $(\operatorname{Coker} \varphi)_t = \operatorname{coker} \varphi_t$, and
- $\sup_{t\in X} \|\varphi_t^{-1}\|_{cb} < \infty.$

Martin Mathieu

(Queen's University Belfast)

• • • • • • • • • • • • •

Theorem

Let $\varphi \in CB_{\mathfrak{A}}(\mathfrak{E},\mathfrak{F})$ for some $\mathfrak{E},\mathfrak{F} \in \mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$. Then φ is admissible if and only if, for each $t \in X$,

- $\varphi_t \in CB_{A_t}(E_t, F_t)$ is admissible;
- $\hat{\varphi}_t^0$ is surjective;
- $(\operatorname{Ker} \varphi)_t = \operatorname{ker} \varphi_t$, $(\operatorname{Coker} \varphi)_t = \operatorname{coker} \varphi_t$, and
- $\sup_{t\in X} \|\varphi_t^{-1}\|_{cb} < \infty.$

In particular, the stalk functor at $t \in X$ is exact from $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$ to $\mathcal{OMod}_{A_t}^{\infty}$.

Martin Mathieu

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology

(Queen's University Belfast)

(日) (同) (三) (三)

Theorem

Let $\varphi \in CB_{\mathfrak{A}}(\mathfrak{E},\mathfrak{F})$ for some $\mathfrak{E},\mathfrak{F} \in \mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$. Then φ is admissible if and only if, for each $t \in X$,

•
$$\varphi_t \in CB_{A_t}(\mathsf{E}_t,\mathsf{F}_t)$$
 is admissible;

• $\hat{\varphi}_t^0$ is surjective;

•
$$(\operatorname{Ker} \varphi)_t = \operatorname{ker} \varphi_t$$
, $(\operatorname{Coker} \varphi)_t = \operatorname{coker} \varphi_t$, and

•
$$\sup_{t\in X} \|\varphi_t^{-1}\|_{cb} < \infty.$$

In particular, the stalk functor at $t \in X$ is exact from $\mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$ to $\mathcal{OMod}_{A_{t}}^{\infty}$.

Martin Mathieu

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology

(Queen's University Belfast)

< ロ > < 同 > < 三 > < 三

Proposition

For every morphism $\varphi \in CB_{\mathfrak{A}}(\mathfrak{E},\mathfrak{F})$, there exists a unique factorisation $\varphi = \mu \hat{\varphi} \pi$ as given in the commutative diagram below.

Moreover, φ is admissible if and only if $\hat{\varphi}$ is an isomorphism.

Martin Mathieu

Local Multipliers and Derivations, Sheaves of C*-Algebras and Cohomology

(Queen's University Belfast)

Image: A math a math

(Queen's University Belfast)

Characterising admissible morphisms

Proposition

For every morphism $\varphi \in CB_{\mathfrak{A}}(\mathfrak{E},\mathfrak{F})$, there exists a unique factorisation $\varphi = \mu \hat{\varphi} \pi$ as given in the commutative diagram below.

Moreover, φ is admissible if and only if $\hat{\varphi}$ is an isomorphism.

this relies on the fact that $\mathcal{OMod}^{\infty}_{\mathfrak{A}}(X)$ is *semi-abelian*; in an abelian category, $\hat{\varphi}$ is always an isomorphism.

Martin Mathieu

< ロ > < 回 > < 回 > < 回 > < 回 >

Martin Mathieu

Queen's University Belfast

æ

 \Diamond to introduce injective sheaves;

Martin Mathieu

(Queen's University Belfast)

э

э

・ロン ・回 と ・ ヨン ・

- ♦ to introduce injective sheaves;
- ♦ to construct injective resolutions;

Martin Mathieu

(Queen's University Belfast)

・ロト ・回ト ・ヨト

- ♦ to introduce injective sheaves;
- ♦ to construct injective resolutions;
- \diamond to define the homology of a complex \mathfrak{F}^{\bullet} in $\mathcal{OMod}^{\infty}_{\mathfrak{A}}(X)$

$$\ldots \longrightarrow \mathfrak{F}_{i-1} \xrightarrow{\delta^{i-1}} \mathfrak{F}_i \xrightarrow{\delta^i} \mathfrak{F}_{i+1} \longrightarrow \ldots$$

Martin Mathieu

Queen's University Belfast)

Image: A math a math

- to introduce injective sheaves;
- to construct injective resolutions;
- \diamond to define the homology of a complex \mathfrak{F}^{ullet} in $\mathcal{OMod}^{\infty}_{\mathfrak{A}}(X)$

$$\ldots \longrightarrow \mathfrak{F}_{i-1} \xrightarrow{\delta^{i-1}} \mathfrak{F}_i \xrightarrow{\delta^i} \mathfrak{F}_{i+1} \longrightarrow \ldots$$

 \diamond to use homological algebra (such as the Horseshoe Lemma) in $\mathcal{OMod}^{\infty}_{\mathfrak{A}}(X)$ to ensure that homotopic injective resolutions yield the same homology

Martin Mathieu

(Queen's University Belfast)

Image: A math a math

- to introduce injective sheaves;
- to construct injective resolutions;
- \diamond to define the homology of a complex \mathfrak{F}^{ullet} in $\mathcal{OMod}^{\infty}_{\mathfrak{A}}(X)$

$$\ldots \longrightarrow \mathfrak{F}_{i-1} \xrightarrow{\delta^{i-1}} \mathfrak{F}_i \xrightarrow{\delta^i} \mathfrak{F}_{i+1} \longrightarrow \ldots$$

- \diamond to use homological algebra (such as the Horseshoe Lemma) in $\mathcal{OMod}^{\infty}_{\mathfrak{A}}(X)$ to ensure that homotopic injective resolutions yield the same homology
- ♦ to introduce the cohomology groups as the right derived functor of the global section functor applied to an injective resolution of $\mathfrak{F} \in \mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$

Martin Mathieu

Image: A math a math

Sheaf Cohomology

$H^{i}(X,\mathfrak{F}), i \in \mathbb{N}$

where X is a topological space, \mathfrak{A} a sheaf of C*-algebras on X and $\mathfrak{F} \in \mathcal{OMod}_{\mathfrak{A}}^{\infty}(X)$.

Martin Mathieu

(Queen's University Belfast)

・ロッ ・回 ・ ・ ヨッ ・

Thank you!

Martin Mathieu

Queen's University Belfast)