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Part V: Towards sheaf cohomology
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A key property in abelian categories

in an abelian category,

e the morphism set between any pair of object
group;

s is an abelian
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A key property in abelian categories

in an abelian category,

e the morphism set between any pair of objects is an abelian
group;

e every morphism has a kernel and a cokernel,
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Exact categories

A key property in abelian categories

in an abelian category,

e the morphism set between any pair of objects is an abelian
group;
e every morphism has a kernel and a cokernel,

e every morphism can be uniquely factorised as

E—F ~F

NoA

G

where 7 is an epimorphism and p is a monomorphism.
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A replacement for the key property

to make up for the missing third property in O.llod (X)), we
introduce an exact structure.
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Exact categories

Kernels in Oltod 3 (X)

Definition

Let p € CBy(€,F) for some &, § € OMody(X). For each

U € Ox, we set (Ker)(U) = ker ¢y.

Since Tyy ker py C ker iy, whenever V' C U, we can restrict the
connecting morphisms Ty in & to connecting morphisms

ker oy — ker py. In this way, we obtain a sub-presheaf Ker ¢ of &
which is easily checked to be a sheaf.

We will call this the sheaf kernel or simply the kernel of .
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Exact categories

Cokernels in Ollod 3 (X)

Definition

Let ¢ € CBy(€,§) for some €, § € OMod I (X). For each

U € Ox, we set (PCoker ¢)(U) = coker py. Recall that

coker py = F(U)/im py by definition.

Since Syyim py C im py whenever V' C U, the connecting
morphisms Syy in § induce connecting morphisms

coker oy — cokerpy. In this way, we obtain a presheaf PCoker ¢,
called the presheaf cokernel of .

Since this is in general not a sheaf, we define the sheaf cokernel

or simply the cokernel of ¢ as the sheafification of PCoker ¢
Coker ¢ = (PCoker ¢)™.
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Exact categories

Kernels and cokernels in Ollod i (X)

Remarks

e The canonical embedding ¢: Kerp — € is in fact a
monomorphism in O./lod}y(X) since each 1y is a complete
isometry.

e The canonical quotient morphism 7: § — PCoker ¢ is in fact
an epimorphism in O.4od}(X) since each 7y is a completely
contractive complete quotient mapping.

Letting 7: § — Coker ¢ be given by 7y = nymy, U € Ox,
where 7 is the sheafification transformation, we have ||7||c < 1,
since || Tulles < Inulles ||mulles for all U € Ox.
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Exact categories

Kernels and cokernels in Ollod i (X)

Theorem

Let X be a topological space and let 21 be a sheaf of C*-algebras
on X. Let €, F € OMod L (X). For each ¢ € CBy(€,F), Kerp is
a kernel in the category OMlod ' (X) and Coker ¢ is a cokernel in
OMod 5 (X). In particular, the morphisms v and 7 defined above
are a monomorphism and an epimorphism, respectively in
OMod i (X).
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A glimpse into the proof
ker oy

B(U)

§(U)
"

Tw

Sw
v)
7 \M
ker oy
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Exact categories

A kernel

Let f € Morg(A, B) for some A, B € €.

A morphism i: K — A'is a kernel of f if fi = 0 and for each
D € € and g € Morg(D, A) with fg = 0 there is a unique
h € Morg(D, K) making the diagram below commutative

D
n o~ 0
/s 8
/
I’I f
K A B
\_/
0

Any kernel is a monomorphism and is, up to isomorphism, unique.
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Exact categories

A cokernel

Let f € Morg(A, B) for some A, B € €.

A morphism p: B — C is a cokernel of f if pf = 0 and for each
D € € and g € Morg(B, D) with gf = 0 there is a unique
h € Morg(C, D) making the diagram below commutative

0
/\
A - B 5 /C

s
€ //h
0 y
D

Any cokernel is an epimorphism and is, up to isomorphism, unique.
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Exact categories

Kernels and cokernels in Ollod i (X)

Fact.

Let € be a category with the property that every morphism has
both a kernel and a cokernel (which is the case in Olod ' (X)
and in OMlod}(X)).

Then a morphism which is a kernel necessarily is the kernel of its
cokernel, and a morphism which is a cokernel necessarily is the
cokernel of its kernel.
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Exact categories

Exact categories

let € be an additive category;
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Exact categories

Exact categories

let € be an additive category;
if € is abelian

every monomorphism is a kernel and every epimorphism is a
cokernel;

u]
o)
I

i
it
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Exact categories

Exact categories
let € be an additive category;

in general, a monomorphism which is a kernel is called admissible
E>——F

and an epimorphism which is a cokernel is called admissible
E—F

A kernel-cokernel pair (M, P) consists of two composable
morphisms in € such that M = Ker P and P = Coker M,

E-M. 5 P g

where E; € 6.
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Exact categories

Exact categories

An exact structure on an additive category € is a class of kernel-cokernel
pairs, closed under isomorphisms, such that the following axioms are
satisfied.

[EO] V E € €: 1 is an admissible monomorphism;
[EQ°P] V E € €: 1 is an admissible epimorphism;

[E1] the class of admissible monomorphisms is closed under
composition;

[E1°P] the class of admissible epimorphisms is closed under composition;

[E2] the push-out of an admissible monomorphism along an arbitrary
morphism exists and yields an admissible monomorphism;

[E2°P] the pull-back of an admissible epimorphism along an arbitrary
morphism exists and yields an admissible epimorphism.
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OMlod 3 (X) is exact

An exact structure on OMlod 3 (X)

Definition

Let X be a topological space and let 2 be a sheaf of C*algebras
on X. Let &zy(X) denote the collection of all kernel-cokernels
pairs in OMod 3 (X)

E e @y By .

We call this the canonical exact structure on Olbodf(X).
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OMlod 3 (X) is exact

An exact structure on OMlod 3 (X)

Definition

Let X be a topological space and let 2 be a sheaf of C*algebras
on X. Let &zy(X) denote the collection of all kernel-cokernels
pairs in OMod 3 (X)

(3] Sl &> s (L
We call this the canonical exact structure on Olbodf(X).

Theorem

The class xg(X) of all kernel-cokernel pairs defines an exact
structure on OMod i (X).
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is exact

An exact structure on OMlod 3 (X)
Remarks

1. &zg(X) is the largest exact structure on OMod i (X).
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OMlod 3 (X) is exact

An exact structure on OMlod 3 (X)

Remarks
1. &zg(X) is the largest exact structure on OMod i (X).

2. Axioms [EQ] and [EQ°P] are easily verified.
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OMlod 3 (X) is exact

An exact structure on OMlod 3 (X)

Remarks
3. Given a kernel—cokernel pair (u, @) in Ezy(X) we obtain an

isomorphic pair (¢, 7)

E s & —F s @y
Kerm (53 Coker¢

For each U € Ox, we get an exact sequence in @%Mél(u)
0 —>kermy —%> E;(U) —% coker ity —=0

where coker 1y = €(U)/im vy since vy is a complete isometry.

(Queen’s University Belfast)
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OMlod 3 (X) is exact

Characterising kernels in O.ltod 3 (X)

Proposition

Let p € CBy(€,F) for some €, § € OMod I (X) and let

7: § — Coker . Then p is a kernel in OMlod (X)) if and only if,
for each t € X, (ut,mt) is a kernel—cokernel pair in OMod . with
imud = ker 79 and sup,ex ||z Hep < 0.
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OMlod 3 (X) is exact

Characterising cokernels in O.llod 5 (X)

Proposition

Let w € CBy(§, ®) for some §, & € OMod I (X). Then w is a
cokernel in OMod 3 (X) if and only if, for each t € X, @? is
completely open onto G? and sup,cx @7 e < 0.

Ker R “ ®
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OMlod 3 (X) is exact

The isomorphisms in Ollod 3 (X)

Theorem

Let o € CBy(€,5) for some €,§ € OMod(X). Then the
following conditions are equivalent.

(a) ¢ is an isomorphism;

(b) wu is an isomorphism in OMlod 5y for each U € Ox and
supyeoy 1y lleb < 00;

(c) ¢ is an isomorphism in OAdlody for each t € X,
SUP:ex ||<,0t_1||cb < 0o and 9 is surjective for each t € X.

here, ©9: E9 — F9 is the restriction of ¢, to the uncompleted
Pr- ke t 2

directed colimit.
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OMlod 3 (X) is exact

We need to consider the following commutative diagram.

¢(U) —4=§(U)

l Twy L Swu

Tl e(v)—=F(V)

s

0 0
E; 5 F?
Pt

where t € X is fixed and V, U € %;, V C U. Moreover,

Ty: €(U) — E; denotes the canonical morphism into the stalk E;
at t and EY = Uyeq, Tu€(U), the uncompleted directed colimit,
which is dense in E;.
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Oltod 3 (X) is exact

Lemma (Axiom [E1])

Let (u, ™) and (i, @’) be two kernel-cokernel pairs in Exy(X).
Suppose that p and 1/ are composable so that we have the
commutative diagram

53 Coker (up')

Then py' is an admissible monomorphism in OMod 3 (X).
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Oltod 3 (X) is exact

Lemma (Axiom [E1°P])

Let (u, ™) and (i, @’) be two kernel-cokernel pairs in Exy(X).
Suppose that @ and @' are composable so that we have the
commutative diagram

Then w'w is an admissible epimorphism in OMod 3 (X).
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Oltod 3 (X) is exact

Proposition

Let €, § and & € Ollod S (X) and 7 € CBy(F, ®), p € CBy (€, &) be
given. Then the pullback of p along T exists and in the pullback diagram

ExeF——>3F

€E———>6

we have, for each U € Oy,
(€ x F)(U) = €(U) xov) S(V)
={(x,y) € €(U) x F(U) | pu(x) = Tu(y)}

and Ty(x,y) = x, py(x,y) =y for all (x,y). Moreover, for each t € X,

(¢ xpF)? =E? Xgo Fo.
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Oltod 3 (X) is exact

Proposition

Let €, §, & € Ollod(X) and let p € CBy(®, €) and o € CBy(®,F)
be given. Then the pushout of o along p exists in OMod 3 (X):

66— >3

C— > e §

ForUeo oo
) 3(U)

E(U) ———— &(U) Do (u) S(U)

where €(U) Gy S(U) = (€(U) & F(V)) /H(U) with

H(U) = {(pu(z),—0ou(2)) | z € B(V)}.
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Oltod 3 (X) is exact

Proposition

Let €, §, & € Ollod(X) and let p € CBy(®, €) and o € CBy(®,F)
be given. Then the pushout of o along p exists in OMod 3 (X):

Fort e X, G ———F

E: — E: @, Ft

where Et ®Gt Ft = (Et (&) Ft)/Ht with

He = {(pt(z)a_af(z)) |z € Hf}

and 6’t(X) = (X,O) + Htr X € Etr ﬁt()’) = (07y) + Htr y € Ft~
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OMlod 3 (X) is exact

Lemma (Axiom [E2])

The pushout of an admissible monomorphism in Ollod 3 (X) is an
admissible monomorphism.

Lemma (Axiom [E2°P])

The pullback of an admissible epimorphism in OMod (X) is an
admissible epimorphism.
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OMlod 3 (X) is exact

OMod i (X) is exact.

Theorem

The class xo(X) of all kernel-cokernel pairs defines an exact
structure on OMod i (X).
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Homological Algebra in
Exact sequences

in Ezg(X), every kernel-cokernel pair

¢ > € ¢
where &; € Ollod(X) is called a short exact sequence.
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Homological Algebra in Ollod

Exact sequences
in Ezg(X), every kernel-cokernel pair

E = @y P @y

where &; € Ollod(X) is called a short exact sequence.
In order to define general exact sequences we first introduce the
concept of an admissible morphism.
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Homological Algebra in Ollod s,

Exact sequences
in Ezg(X), every kernel-cokernel pair

¢ > € ¢
where &; € Ollod(X) is called a short exact sequence.
Definition

The morphism ¢ € CBy(€,5), €,§ € Ollod(X) is called
admissible if it can be factorised as

¢ p

A

for some admissible monomorphism p and some admissible
epimorphism w in OMod 3 (X).
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Homological Algebra in Ollod

Exact sequences

Definition
A sequence of admissible morphisms in O.lod 57 (X)

Qfl ®1 sz ®2 ¢
Q51 62

is said to be exact if the short sequence 61>L> ¢ 2 6,
is exact. An arbitrary sequence of admissible morphisms in
OMod i (X) is exact if the sequences given by any two
consecutive morphisms are exact.

3
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Homological Algebra in Ollod s,

Characterising admissible morphisms

Theorem

Let ¢ € CBy(€,F) for some €, F € OMod(X). Then ¢ is
admissible if and only if, for each t € X,

o ¢ € CBa,(E¢, Ft) is admissible;
o AV is surjective;
o (Kerp): = ker ¢, (Coker ) = coker ¢, and

o supeex [lor lap < 0.
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Homological Algebra in Oltod 5 (X)

Characterising admissible morphisms

Theorem

Let ¢ € CBy(€,F) for some €, F € OMod(X). Then ¢ is
admissible if and only if, for each t € X,

ot € CBa,(E¢, Ft) is admissible;

@Y is surjective;

(Ker ) = ker ¢y, (Coker ) = coker p;, and

supeex ||z b < 0.

In particular, the stalk functor at t € X is exact from OMod I (X)
to OMlody .
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Homological Algebra in Oltod 5 (X)

Characterising admissible morphisms

Theorem

Let ¢ € CBy(€,F) for some €, F € OMod(X). Then ¢ is
admissible if and only if, for each t € X,

ot € CBa,(E¢, Ft) is admissible;

@Y is surjective;

(Ker ) = ker ¢y, (Coker ) = coker p;, and

supeex ||z b < 0.

In particular, the stalk functor at t € X is exact from OMod I (X)
to OMlody .
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Homological Algebra in Ollod

Characterising admissible morphisms

Proposition

For every morphism ¢ € CBy(€,5), there exists a unique
factorisation p = pupm as given in the commutative diagram below.

Kerp ——¢& 4 §—2 Coker
| i
Coker ¢ ¢ Kerp

Moreover, ¢ is admissible if and only if ¢ is an isomorphism.
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Homological Algebra in Ollod

Characterising admissible morphisms

Proposition

For every morphism ¢ € CBy(€,5), there exists a unique
factorisation p = pupm as given in the commutative diagram below.

Kerp ——¢& 4 §—2 Coker
| i
Coker ¢ ¢ Kerp

Moreover, ¢ is admissible if and only if ¢ is an isomorphism.

this relies on the fact that O#oa 3 (X) is semi-abelian;

in an abelian category, ¢ is always an isomorphism.
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The next steps

what are the next steps in our programme?
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The next steps

what are the next steps in our programme?

¢ to introduce injective sheaves;
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what are the next steps in our programme?

¢ to introduce injective sheaves;

{ to construct injective resolutions;
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The next steps

what are the next steps in our programme?

¢ to introduce injective sheaves;
{ to construct injective resolutions;
{ to define the homology of a complex §* in Ol od T (X)

! 5

Si-1 o Si

i
Sit1 — ...
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The next steps

what are the next steps in our programme?

{ to introduce injective sheaves;
{ to construct injective resolutions;
{ to define the homology of a complex §* in Ol od T (X)

! 5

Si-1 o Si

i
Sit1 — ...

{ to use homological algebra (such as the Horseshoe Lemma) in
OMod i (X) to ensure that homotopic injective resolutions yield
the same homology
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The next steps

what are the next steps in our programme?

{ to introduce injective sheaves;
{ to construct injective resolutions;
{ to define the homology of a complex §* in Ol od T (X)

6/‘—1 5:’
Sit1 — ...

Si-1 Si

{ to use homological algebra (such as the Horseshoe Lemma) in
OMod i (X) to ensure that homotopic injective resolutions yield
the same homology

¢ to introduce the cohomology groups as the right derived functor

of the global section functor applied to an injective resolution of
§ € OMod (X)
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The next steps

Sheaf Cohomology

HI(X,5), i€ N

where X is a topological space, 2 a sheaf of C*algebras on X and
§ € OMod L (X).
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Exact categories OMlod q (X) is exact Homological Algebra in ¢ /’/«w'ﬁ (X) The next steps
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